diff --git a/modules/globals.py b/modules/globals.py index cffae16..cac2302 100644 --- a/modules/globals.py +++ b/modules/globals.py @@ -36,3 +36,8 @@ fp_ui: Dict[str, bool] = {"face_enhancer": False} camera_input_combobox = None webcam_preview_running = False show_fps = False +mouth_mask = False +show_mouth_mask_box = False +mask_feather_ratio = 8 +mask_down_size = 0.50 +mask_size = 1 diff --git a/modules/processors/frame/face_swapper.py b/modules/processors/frame/face_swapper.py index 6fd0760..0c7d88c 100644 --- a/modules/processors/frame/face_swapper.py +++ b/modules/processors/frame/face_swapper.py @@ -2,35 +2,49 @@ from typing import Any, List import cv2 import insightface import threading - +import numpy as np import modules.globals import modules.processors.frame.core from modules.core import update_status from modules.face_analyser import get_one_face, get_many_faces, default_source_face from modules.typing import Face, Frame -from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video +from modules.utilities import ( + conditional_download, + resolve_relative_path, + is_image, + is_video, +) from modules.cluster_analysis import find_closest_centroid FACE_SWAPPER = None THREAD_LOCK = threading.Lock() -NAME = 'DLC.FACE-SWAPPER' +NAME = "DLC.FACE-SWAPPER" def pre_check() -> bool: - download_directory_path = resolve_relative_path('../models') - conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx']) + download_directory_path = resolve_relative_path("../models") + conditional_download( + download_directory_path, + [ + "https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx" + ], + ) return True def pre_start() -> bool: if not modules.globals.map_faces and not is_image(modules.globals.source_path): - update_status('Select an image for source path.', NAME) + update_status("Select an image for source path.", NAME) return False - elif not modules.globals.map_faces and not get_one_face(cv2.imread(modules.globals.source_path)): - update_status('No face in source path detected.', NAME) + elif not modules.globals.map_faces and not get_one_face( + cv2.imread(modules.globals.source_path) + ): + update_status("No face in source path detected.", NAME) return False - if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path): - update_status('Select an image or video for target path.', NAME) + if not is_image(modules.globals.target_path) and not is_video( + modules.globals.target_path + ): + update_status("Select an image or video for target path.", NAME) return False return True @@ -40,20 +54,48 @@ def get_face_swapper() -> Any: with THREAD_LOCK: if FACE_SWAPPER is None: - model_path = resolve_relative_path('../models/inswapper_128_fp16.onnx') - FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=modules.globals.execution_providers) + model_path = resolve_relative_path("../models/inswapper_128_fp16.onnx") + FACE_SWAPPER = insightface.model_zoo.get_model( + model_path, providers=modules.globals.execution_providers + ) return FACE_SWAPPER def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: - return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True) + face_swapper = get_face_swapper() + + # Apply the face swap + swapped_frame = face_swapper.get( + temp_frame, target_face, source_face, paste_back=True + ) + + if modules.globals.mouth_mask: + # Create a mask for the target face + face_mask = create_face_mask(target_face, temp_frame) + + # Create the mouth mask + mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon = ( + create_lower_mouth_mask(target_face, temp_frame) + ) + + # Apply the mouth area + swapped_frame = apply_mouth_area( + swapped_frame, mouth_cutout, mouth_box, face_mask, lower_lip_polygon + ) + + if modules.globals.show_mouth_mask_box: + mouth_mask_data = (mouth_mask, mouth_cutout, mouth_box, lower_lip_polygon) + swapped_frame = draw_mouth_mask_visualization( + swapped_frame, target_face, mouth_mask_data + ) + + return swapped_frame def process_frame(source_face: Face, temp_frame: Frame) -> Frame: - # Ensure the frame is in RGB format if color correction is enabled if modules.globals.color_correction: temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) - + if modules.globals.many_faces: many_faces = get_many_faces(temp_frame) if many_faces: @@ -71,35 +113,44 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: if modules.globals.many_faces: source_face = default_source_face() for map in modules.globals.souce_target_map: - target_face = map['target']['face'] + target_face = map["target"]["face"] temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: for map in modules.globals.souce_target_map: if "source" in map: - source_face = map['source']['face'] - target_face = map['target']['face'] + source_face = map["source"]["face"] + target_face = map["target"]["face"] temp_frame = swap_face(source_face, target_face, temp_frame) elif is_video(modules.globals.target_path): if modules.globals.many_faces: source_face = default_source_face() for map in modules.globals.souce_target_map: - target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path] + target_frame = [ + f + for f in map["target_faces_in_frame"] + if f["location"] == temp_frame_path + ] for frame in target_frame: - for target_face in frame['faces']: + for target_face in frame["faces"]: temp_frame = swap_face(source_face, target_face, temp_frame) elif not modules.globals.many_faces: for map in modules.globals.souce_target_map: if "source" in map: - target_frame = [f for f in map['target_faces_in_frame'] if f['location'] == temp_frame_path] - source_face = map['source']['face'] + target_frame = [ + f + for f in map["target_faces_in_frame"] + if f["location"] == temp_frame_path + ] + source_face = map["source"]["face"] for frame in target_frame: - for target_face in frame['faces']: + for target_face in frame["faces"]: temp_frame = swap_face(source_face, target_face, temp_frame) + else: detected_faces = get_many_faces(temp_frame) if modules.globals.many_faces: @@ -110,25 +161,46 @@ def process_frame_v2(temp_frame: Frame, temp_frame_path: str = "") -> Frame: elif not modules.globals.many_faces: if detected_faces: - if len(detected_faces) <= len(modules.globals.simple_map['target_embeddings']): + if len(detected_faces) <= len( + modules.globals.simple_map["target_embeddings"] + ): for detected_face in detected_faces: - closest_centroid_index, _ = find_closest_centroid(modules.globals.simple_map['target_embeddings'], detected_face.normed_embedding) + closest_centroid_index, _ = find_closest_centroid( + modules.globals.simple_map["target_embeddings"], + detected_face.normed_embedding, + ) - temp_frame = swap_face(modules.globals.simple_map['source_faces'][closest_centroid_index], detected_face, temp_frame) + temp_frame = swap_face( + modules.globals.simple_map["source_faces"][ + closest_centroid_index + ], + detected_face, + temp_frame, + ) else: detected_faces_centroids = [] for face in detected_faces: - detected_faces_centroids.append(face.normed_embedding) + detected_faces_centroids.append(face.normed_embedding) i = 0 - for target_embedding in modules.globals.simple_map['target_embeddings']: - closest_centroid_index, _ = find_closest_centroid(detected_faces_centroids, target_embedding) + for target_embedding in modules.globals.simple_map[ + "target_embeddings" + ]: + closest_centroid_index, _ = find_closest_centroid( + detected_faces_centroids, target_embedding + ) - temp_frame = swap_face(modules.globals.simple_map['source_faces'][i], detected_faces[closest_centroid_index], temp_frame) + temp_frame = swap_face( + modules.globals.simple_map["source_faces"][i], + detected_faces[closest_centroid_index], + temp_frame, + ) i += 1 return temp_frame -def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None: +def process_frames( + source_path: str, temp_frame_paths: List[str], progress: Any = None +) -> None: if not modules.globals.map_faces: source_face = get_one_face(cv2.imread(source_path)) for temp_frame_path in temp_frame_paths: @@ -162,7 +234,9 @@ def process_image(source_path: str, target_path: str, output_path: str) -> None: cv2.imwrite(output_path, result) else: if modules.globals.many_faces: - update_status('Many faces enabled. Using first source image. Progressing...', NAME) + update_status( + "Many faces enabled. Using first source image. Progressing...", NAME + ) target_frame = cv2.imread(output_path) result = process_frame_v2(target_frame) cv2.imwrite(output_path, result) @@ -170,5 +244,367 @@ def process_image(source_path: str, target_path: str, output_path: str) -> None: def process_video(source_path: str, temp_frame_paths: List[str]) -> None: if modules.globals.map_faces and modules.globals.many_faces: - update_status('Many faces enabled. Using first source image. Progressing...', NAME) - modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames) + update_status( + "Many faces enabled. Using first source image. Progressing...", NAME + ) + modules.processors.frame.core.process_video( + source_path, temp_frame_paths, process_frames + ) + + +def create_lower_mouth_mask( + face: Face, frame: Frame +) -> (np.ndarray, np.ndarray, tuple, np.ndarray): + mask = np.zeros(frame.shape[:2], dtype=np.uint8) + mouth_cutout = None + landmarks = face.landmark_2d_106 + if landmarks is not None: + # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 + lower_lip_order = [ + 65, + 66, + 62, + 70, + 69, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 0, + 8, + 7, + 6, + 5, + 4, + 3, + 2, + 65, + ] + lower_lip_landmarks = landmarks[lower_lip_order].astype( + np.float32 + ) # Use float for precise calculations + + # Calculate the center of the landmarks + center = np.mean(lower_lip_landmarks, axis=0) + + # Expand the landmarks outward + expansion_factor = ( + 1 + modules.globals.mask_down_size + ) # Adjust this for more or less expansion + expanded_landmarks = (lower_lip_landmarks - center) * expansion_factor + center + + # Extend the top lip part + toplip_indices = [ + 20, + 0, + 1, + 2, + 3, + 4, + 5, + ] # Indices for landmarks 2, 65, 66, 62, 70, 69, 18 + toplip_extension = ( + modules.globals.mask_size * 0.5 + ) # Adjust this factor to control the extension + for idx in toplip_indices: + direction = expanded_landmarks[idx] - center + direction = direction / np.linalg.norm(direction) + expanded_landmarks[idx] += direction * toplip_extension + + # Extend the bottom part (chin area) + chin_indices = [ + 11, + 12, + 13, + 14, + 15, + 16, + ] # Indices for landmarks 21, 22, 23, 24, 0, 8 + chin_extension = 2 * 0.2 # Adjust this factor to control the extension + for idx in chin_indices: + expanded_landmarks[idx][1] += ( + expanded_landmarks[idx][1] - center[1] + ) * chin_extension + + # Convert back to integer coordinates + expanded_landmarks = expanded_landmarks.astype(np.int32) + + # Calculate bounding box for the expanded lower mouth + min_x, min_y = np.min(expanded_landmarks, axis=0) + max_x, max_y = np.max(expanded_landmarks, axis=0) + + # Add some padding to the bounding box + padding = int((max_x - min_x) * 0.1) # 10% padding + min_x = max(0, min_x - padding) + min_y = max(0, min_y - padding) + max_x = min(frame.shape[1], max_x + padding) + max_y = min(frame.shape[0], max_y + padding) + + # Ensure the bounding box dimensions are valid + if max_x <= min_x or max_y <= min_y: + if (max_x - min_x) <= 1: + max_x = min_x + 1 + if (max_y - min_y) <= 1: + max_y = min_y + 1 + + # Create the mask + mask_roi = np.zeros((max_y - min_y, max_x - min_x), dtype=np.uint8) + cv2.fillPoly(mask_roi, [expanded_landmarks - [min_x, min_y]], 255) + + # Apply Gaussian blur to soften the mask edges + mask_roi = cv2.GaussianBlur(mask_roi, (15, 15), 5) + + # Place the mask ROI in the full-sized mask + mask[min_y:max_y, min_x:max_x] = mask_roi + + # Extract the masked area from the frame + mouth_cutout = frame[min_y:max_y, min_x:max_x].copy() + + # Return the expanded lower lip polygon in original frame coordinates + lower_lip_polygon = expanded_landmarks + + return mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon + + +def draw_mouth_mask_visualization( + frame: Frame, face: Face, mouth_mask_data: tuple +) -> Frame: + landmarks = face.landmark_2d_106 + if landmarks is not None and mouth_mask_data is not None: + mask, mouth_cutout, (min_x, min_y, max_x, max_y), lower_lip_polygon = ( + mouth_mask_data + ) + + vis_frame = frame.copy() + + # Ensure coordinates are within frame bounds + height, width = vis_frame.shape[:2] + min_x, min_y = max(0, min_x), max(0, min_y) + max_x, max_y = min(width, max_x), min(height, max_y) + + # Adjust mask to match the region size + mask_region = mask[0 : max_y - min_y, 0 : max_x - min_x] + + # Remove the color mask overlay + # color_mask = cv2.applyColorMap((mask_region * 255).astype(np.uint8), cv2.COLORMAP_JET) + + # Ensure shapes match before blending + vis_region = vis_frame[min_y:max_y, min_x:max_x] + # Remove blending with color_mask + # if vis_region.shape[:2] == color_mask.shape[:2]: + # blended = cv2.addWeighted(vis_region, 0.7, color_mask, 0.3, 0) + # vis_frame[min_y:max_y, min_x:max_x] = blended + + # Draw the lower lip polygon + cv2.polylines(vis_frame, [lower_lip_polygon], True, (0, 255, 0), 2) + + # Remove the red box + # cv2.rectangle(vis_frame, (min_x, min_y), (max_x, max_y), (0, 0, 255), 2) + + # Visualize the feathered mask + feather_amount = max( + 1, + min( + 30, + (max_x - min_x) // modules.globals.mask_feather_ratio, + (max_y - min_y) // modules.globals.mask_feather_ratio, + ), + ) + # Ensure kernel size is odd + kernel_size = 2 * feather_amount + 1 + feathered_mask = cv2.GaussianBlur( + mask_region.astype(float), (kernel_size, kernel_size), 0 + ) + feathered_mask = (feathered_mask / feathered_mask.max() * 255).astype(np.uint8) + # Remove the feathered mask color overlay + # color_feathered_mask = cv2.applyColorMap(feathered_mask, cv2.COLORMAP_VIRIDIS) + + # Ensure shapes match before blending feathered mask + # if vis_region.shape == color_feathered_mask.shape: + # blended_feathered = cv2.addWeighted(vis_region, 0.7, color_feathered_mask, 0.3, 0) + # vis_frame[min_y:max_y, min_x:max_x] = blended_feathered + + # Add labels + cv2.putText( + vis_frame, + "Lower Mouth Mask", + (min_x, min_y - 10), + cv2.FONT_HERSHEY_SIMPLEX, + 0.5, + (255, 255, 255), + 1, + ) + cv2.putText( + vis_frame, + "Feathered Mask", + (min_x, max_y + 20), + cv2.FONT_HERSHEY_SIMPLEX, + 0.5, + (255, 255, 255), + 1, + ) + + return vis_frame + return frame + + +def apply_mouth_area( + frame: np.ndarray, + mouth_cutout: np.ndarray, + mouth_box: tuple, + face_mask: np.ndarray, + mouth_polygon: np.ndarray, +) -> np.ndarray: + min_x, min_y, max_x, max_y = mouth_box + box_width = max_x - min_x + box_height = max_y - min_y + + if ( + mouth_cutout is None + or box_width is None + or box_height is None + or face_mask is None + or mouth_polygon is None + ): + return frame + + try: + resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height)) + roi = frame[min_y:max_y, min_x:max_x] + + if roi.shape != resized_mouth_cutout.shape: + resized_mouth_cutout = cv2.resize( + resized_mouth_cutout, (roi.shape[1], roi.shape[0]) + ) + + color_corrected_mouth = apply_color_transfer(resized_mouth_cutout, roi) + + # Use the provided mouth polygon to create the mask + polygon_mask = np.zeros(roi.shape[:2], dtype=np.uint8) + adjusted_polygon = mouth_polygon - [min_x, min_y] + cv2.fillPoly(polygon_mask, [adjusted_polygon], 255) + + # Apply feathering to the polygon mask + feather_amount = min( + 30, + box_width // modules.globals.mask_feather_ratio, + box_height // modules.globals.mask_feather_ratio, + ) + feathered_mask = cv2.GaussianBlur( + polygon_mask.astype(float), (0, 0), feather_amount + ) + feathered_mask = feathered_mask / feathered_mask.max() + + face_mask_roi = face_mask[min_y:max_y, min_x:max_x] + combined_mask = feathered_mask * (face_mask_roi / 255.0) + + combined_mask = combined_mask[:, :, np.newaxis] + blended = ( + color_corrected_mouth * combined_mask + roi * (1 - combined_mask) + ).astype(np.uint8) + + # Apply face mask to blended result + face_mask_3channel = ( + np.repeat(face_mask_roi[:, :, np.newaxis], 3, axis=2) / 255.0 + ) + final_blend = blended * face_mask_3channel + roi * (1 - face_mask_3channel) + + frame[min_y:max_y, min_x:max_x] = final_blend.astype(np.uint8) + except Exception as e: + pass + + return frame + + +def create_face_mask(face: Face, frame: Frame) -> np.ndarray: + mask = np.zeros(frame.shape[:2], dtype=np.uint8) + landmarks = face.landmark_2d_106 + if landmarks is not None: + # Convert landmarks to int32 + landmarks = landmarks.astype(np.int32) + + # Extract facial features + right_side_face = landmarks[0:16] + left_side_face = landmarks[17:32] + right_eye = landmarks[33:42] + right_eye_brow = landmarks[43:51] + left_eye = landmarks[87:96] + left_eye_brow = landmarks[97:105] + + # Calculate forehead extension + right_eyebrow_top = np.min(right_eye_brow[:, 1]) + left_eyebrow_top = np.min(left_eye_brow[:, 1]) + eyebrow_top = min(right_eyebrow_top, left_eyebrow_top) + + face_top = np.min([right_side_face[0, 1], left_side_face[-1, 1]]) + forehead_height = face_top - eyebrow_top + extended_forehead_height = int(forehead_height * 5.0) # Extend by 50% + + # Create forehead points + forehead_left = right_side_face[0].copy() + forehead_right = left_side_face[-1].copy() + forehead_left[1] -= extended_forehead_height + forehead_right[1] -= extended_forehead_height + + # Combine all points to create the face outline + face_outline = np.vstack( + [ + [forehead_left], + right_side_face, + left_side_face[ + ::-1 + ], # Reverse left side to create a continuous outline + [forehead_right], + ] + ) + + # Calculate padding + padding = int( + np.linalg.norm(right_side_face[0] - left_side_face[-1]) * 0.05 + ) # 5% of face width + + # Create a slightly larger convex hull for padding + hull = cv2.convexHull(face_outline) + hull_padded = [] + for point in hull: + x, y = point[0] + center = np.mean(face_outline, axis=0) + direction = np.array([x, y]) - center + direction = direction / np.linalg.norm(direction) + padded_point = np.array([x, y]) + direction * padding + hull_padded.append(padded_point) + + hull_padded = np.array(hull_padded, dtype=np.int32) + + # Fill the padded convex hull + cv2.fillConvexPoly(mask, hull_padded, 255) + + # Smooth the mask edges + mask = cv2.GaussianBlur(mask, (5, 5), 3) + + return mask + + +def apply_color_transfer(source, target): + """ + Apply color transfer from target to source image + """ + source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") + target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") + + source_mean, source_std = cv2.meanStdDev(source) + target_mean, target_std = cv2.meanStdDev(target) + + # Reshape mean and std to be broadcastable + source_mean = source_mean.reshape(1, 1, 3) + source_std = source_std.reshape(1, 1, 3) + target_mean = target_mean.reshape(1, 1, 3) + target_std = target_std.reshape(1, 1, 3) + + # Perform the color transfer + source = (source - source_mean) * (target_std / source_std) + target_mean + + return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR) diff --git a/modules/ui.py b/modules/ui.py index bbfebf1..98c3234 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -269,6 +269,28 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C ) show_fps_switch.place(relx=0.6, rely=0.75) + mouth_mask_var = ctk.BooleanVar(value=modules.globals.mouth_mask) + mouth_mask_switch = ctk.CTkSwitch( + root, + text="Mouth Mask", + variable=mouth_mask_var, + cursor="hand2", + command=lambda: setattr(modules.globals, "mouth_mask", mouth_mask_var.get()), + ) + mouth_mask_switch.place(relx=0.1, rely=0.55) + + show_mouth_mask_box_var = ctk.BooleanVar(value=modules.globals.show_mouth_mask_box) + show_mouth_mask_box_switch = ctk.CTkSwitch( + root, + text="Show Mouth Mask Box", + variable=show_mouth_mask_box_var, + cursor="hand2", + command=lambda: setattr( + modules.globals, "show_mouth_mask_box", show_mouth_mask_box_var.get() + ), + ) + show_mouth_mask_box_switch.place(relx=0.6, rely=0.55) + start_button = ctk.CTkButton( root, text="Start", cursor="hand2", command=lambda: analyze_target(start, root) ) diff --git a/switch_states.json b/switch_states.json new file mode 100644 index 0000000..625cf3e --- /dev/null +++ b/switch_states.json @@ -0,0 +1 @@ +{"keep_fps": false, "keep_audio": false, "keep_frames": false, "many_faces": false, "map_faces": false, "color_correction": false, "nsfw_filter": false, "live_mirror": false, "live_resizable": true, "fp_ui": {"face_enhancer": false}, "show_fps": false} \ No newline at end of file