import numpy import opennsfw2 from PIL import Image import cv2 # Add OpenCV import import modules.globals # Import globals to access the color correction toggle from modules.typing import Frame MAX_PROBABILITY = 0.85 # Preload the model once for efficiency model = None def predict_frame(target_frame: Frame) -> bool: # Convert the frame to RGB before processing if color correction is enabled if modules.globals.color_correction: target_frame = cv2.cvtColor(target_frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(target_frame) image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO) global model if model is None: model = opennsfw2.make_open_nsfw_model() views = numpy.expand_dims(image, axis=0) _, probability = model.predict(views)[0] return probability > MAX_PROBABILITY def predict_image(target_path: str) -> bool: return opennsfw2.predict_image(target_path) > MAX_PROBABILITY def predict_video(target_path: str) -> bool: _, probabilities = opennsfw2.predict_video_frames(video_path=target_path, frame_interval=100) return any(probability > MAX_PROBABILITY for probability in probabilities)