#include "system.h" #include "esp_log.h" #include "DS4432U.h" #include "EMC2101.h" #include "INA260.h" #include "adc.h" #include "connect.h" #include "global_state.h" #include "led_controller.h" #include "nvs_config.h" #include "oled.h" #include "driver/gpio.h" #include "driver/i2c.h" #include "esp_app_desc.h" #include "esp_netif.h" #include "esp_timer.h" #include "esp_wifi.h" #include "lwip/inet.h" #include #include #include #include #include #include static const char * TAG = "SystemModule"; static void _suffix_string(uint64_t, char *, size_t, int); static esp_netif_t * netif; static esp_netif_ip_info_t ip_info; static void _init_system(GlobalState * global_state, SystemModule * module) { module->duration_start = 0; module->historical_hashrate_rolling_index = 0; module->historical_hashrate_init = 0; module->current_hashrate = 0; module->screen_page = 0; module->shares_accepted = 0; module->shares_rejected = 0; module->best_nonce_diff = nvs_config_get_u64(NVS_CONFIG_BEST_DIFF, 0); module->best_session_nonce_diff = 0; module->start_time = esp_timer_get_time(); module->lastClockSync = 0; module->FOUND_BLOCK = false; module->startup_done = false; // set the pool url module->pool_url = nvs_config_get_string(NVS_CONFIG_STRATUM_URL, CONFIG_STRATUM_URL); //set the pool port module->pool_port = nvs_config_get_u16(NVS_CONFIG_STRATUM_PORT, CONFIG_STRATUM_PORT); // set the best diff string _suffix_string(module->best_nonce_diff, module->best_diff_string, DIFF_STRING_SIZE, 0); _suffix_string(module->best_session_nonce_diff, module->best_session_diff_string, DIFF_STRING_SIZE, 0); // set the ssid string to blank memset(module->ssid, 0, 20); // set the wifi_status to blank memset(module->wifi_status, 0, 20); // test the LEDs // ESP_LOGI(TAG, "Init LEDs!"); // ledc_init(); // led_set(); // Init I2C ESP_ERROR_CHECK(i2c_master_init()); ESP_LOGI(TAG, "I2C initialized successfully"); ADC_init(); // DS4432U tests DS4432U_set_vcore(nvs_config_get_u16(NVS_CONFIG_ASIC_VOLTAGE, CONFIG_ASIC_VOLTAGE) / 1000.0); EMC2101_init(nvs_config_get_u16(NVS_CONFIG_INVERT_FAN_POLARITY, 1)); vTaskDelay(500 / portTICK_PERIOD_MS); // oled if (!OLED_init()) { ESP_LOGI(TAG, "OLED init failed!"); } else { ESP_LOGI(TAG, "OLED init success!"); // clear the oled screen OLED_fill(0); } netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF"); } static void _update_hashrate(SystemModule * module, float power) { if (module->screen_page != 0) { return; } float efficiency = power / (module->current_hashrate / 1000.0); OLED_clearLine(0); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, "Gh%s: %.1f W/Th: %.1f", module->historical_hashrate_init < HISTORY_LENGTH ? "*" : "", module->current_hashrate, efficiency); OLED_writeString(0, 0, module->oled_buf); } static void _update_shares(SystemModule * module) { if (module->screen_page != 0) { return; } OLED_clearLine(1); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, "A/R: %u/%u", module->shares_accepted, module->shares_rejected); OLED_writeString(0, 1, module->oled_buf); } static void _update_best_diff(SystemModule * module) { if (module->screen_page != 0) { return; } OLED_clearLine(3); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, module->FOUND_BLOCK ? "!!! BLOCK FOUND !!!" : "BD: %s", module->best_diff_string); OLED_writeString(0, 3, module->oled_buf); } static void _clear_display(void) { OLED_clearLine(0); OLED_clearLine(1); OLED_clearLine(2); OLED_clearLine(3); } static void _update_system_info(GlobalState * GLOBAL_STATE) { SystemModule * module = &GLOBAL_STATE->SYSTEM_MODULE; PowerManagementModule * power_management = &GLOBAL_STATE->POWER_MANAGEMENT_MODULE; if (OLED_status()) { memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, " Fan: %d RPM", power_management->fan_speed); OLED_writeString(0, 0, module->oled_buf); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, "Temp: %.1f C", power_management->chip_temp); OLED_writeString(0, 1, module->oled_buf); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, " Pwr: %.3f W", power_management->power); OLED_writeString(0, 2, module->oled_buf); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, " %i mV: %i mA", (int) power_management->voltage, (int) power_management->current); OLED_writeString(0, 3, module->oled_buf); } } static void _update_esp32_info(SystemModule * module) { uint32_t free_heap_size = esp_get_free_heap_size(); uint16_t vcore = ADC_get_vcore(); if (OLED_status()) { memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, "FH: %lu bytes", free_heap_size); OLED_writeString(0, 0, module->oled_buf); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, "vCore: %u mV", vcore); OLED_writeString(0, 1, module->oled_buf); esp_netif_get_ip_info(netif, &ip_info); char ip_address_str[IP4ADDR_STRLEN_MAX]; esp_ip4addr_ntoa(&ip_info.ip, ip_address_str, IP4ADDR_STRLEN_MAX); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, "IP: %s", ip_address_str); OLED_writeString(0, 2, module->oled_buf); OLED_writeString(0, 3, esp_app_get_description()->version); } } static void _init_connection(SystemModule * module) { if (OLED_status()) { memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, "Connecting to SSID:"); OLED_writeString(0, 0, module->oled_buf); } } static void _update_connection(SystemModule * module) { if (OLED_status()) { OLED_clearLine(2); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, "%s", module->ssid); OLED_writeString(0, 1, module->oled_buf); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, "Configuration SSID:"); OLED_writeString(0, 2, module->oled_buf); char ap_ssid[13]; generate_ssid(ap_ssid); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, ap_ssid); OLED_writeString(0, 3, module->oled_buf); } } static void _update_system_performance(GlobalState * GLOBAL_STATE) { SystemModule * module = &GLOBAL_STATE->SYSTEM_MODULE; // Calculate the uptime in seconds double uptime_in_seconds = (esp_timer_get_time() - module->start_time) / 1000000; int uptime_in_days = uptime_in_seconds / (3600 * 24); int remaining_seconds = (int) uptime_in_seconds % (3600 * 24); int uptime_in_hours = remaining_seconds / 3600; remaining_seconds %= 3600; int uptime_in_minutes = remaining_seconds / 60; if (OLED_status()) { _update_hashrate(module, GLOBAL_STATE->POWER_MANAGEMENT_MODULE.power); _update_shares(module); _update_best_diff(module); memset(module->oled_buf, 0, 20); snprintf(module->oled_buf, 20, "UT: %dd %ih %im", uptime_in_days, uptime_in_hours, uptime_in_minutes); OLED_writeString(0, 2, module->oled_buf); } } static void show_ap_information(const char * error) { if (OLED_status()) { _clear_display(); if (error != NULL) { OLED_writeString(0, 0, error); } OLED_writeString(0, 1, "Configuration SSID:"); char ap_ssid[13]; generate_ssid(ap_ssid); OLED_writeString(0, 2, ap_ssid); } } static double _calculate_network_difficulty(uint32_t nBits) { uint32_t mantissa = nBits & 0x007fffff; // Extract the mantissa from nBits uint8_t exponent = (nBits >> 24) & 0xff; // Extract the exponent from nBits double target = (double) mantissa * pow(256, (exponent - 3)); // Calculate the target value double difficulty = (pow(2, 208) * 65535) / target; // Calculate the difficulty return difficulty; } static void _check_for_best_diff(SystemModule * module, double diff, uint32_t nbits) { if ((uint64_t) diff > module->best_session_nonce_diff) { module->best_session_nonce_diff = (uint64_t) diff; _suffix_string((uint64_t) diff, module->best_session_diff_string, DIFF_STRING_SIZE, 0); } if ((uint64_t) diff <= module->best_nonce_diff) { return; } module->best_nonce_diff = (uint64_t) diff; nvs_config_set_u64(NVS_CONFIG_BEST_DIFF, module->best_nonce_diff); // make the best_nonce_diff into a string _suffix_string((uint64_t) diff, module->best_diff_string, DIFF_STRING_SIZE, 0); double network_diff = _calculate_network_difficulty(nbits); if (diff > network_diff) { module->FOUND_BLOCK = true; ESP_LOGI(TAG, "FOUND BLOCK!!!!!!!!!!!!!!!!!!!!!! %f > %f", diff, network_diff); } ESP_LOGI(TAG, "Network diff: %f", network_diff); } /* Convert a uint64_t value into a truncated string for displaying with its * associated suitable for Mega, Giga etc. Buf array needs to be long enough */ static void _suffix_string(uint64_t val, char * buf, size_t bufsiz, int sigdigits) { const double dkilo = 1000.0; const uint64_t kilo = 1000ull; const uint64_t mega = 1000000ull; const uint64_t giga = 1000000000ull; const uint64_t tera = 1000000000000ull; const uint64_t peta = 1000000000000000ull; const uint64_t exa = 1000000000000000000ull; char suffix[2] = ""; bool decimal = true; double dval; if (val >= exa) { val /= peta; dval = (double) val / dkilo; strcpy(suffix, "E"); } else if (val >= peta) { val /= tera; dval = (double) val / dkilo; strcpy(suffix, "P"); } else if (val >= tera) { val /= giga; dval = (double) val / dkilo; strcpy(suffix, "T"); } else if (val >= giga) { val /= mega; dval = (double) val / dkilo; strcpy(suffix, "G"); } else if (val >= mega) { val /= kilo; dval = (double) val / dkilo; strcpy(suffix, "M"); } else if (val >= kilo) { dval = (double) val / dkilo; strcpy(suffix, "k"); } else { dval = val; decimal = false; } if (!sigdigits) { if (decimal) snprintf(buf, bufsiz, "%.3g%s", dval, suffix); else snprintf(buf, bufsiz, "%d%s", (unsigned int) dval, suffix); } else { /* Always show sigdigits + 1, padded on right with zeroes * followed by suffix */ int ndigits = sigdigits - 1 - (dval > 0.0 ? floor(log10(dval)) : 0); snprintf(buf, bufsiz, "%*.*f%s", sigdigits + 1, ndigits, dval, suffix); } } void SYSTEM_task(void * pvParameters) { GlobalState * GLOBAL_STATE = (GlobalState *) pvParameters; SystemModule * module = &GLOBAL_STATE->SYSTEM_MODULE; _init_system(GLOBAL_STATE, module); _clear_display(); _init_connection(module); wifi_mode_t wifi_mode; esp_err_t result; while (GLOBAL_STATE->ASIC_functions.init_fn == NULL) { show_ap_information("ASIC MODEL INVALID"); vTaskDelay(5000 / portTICK_PERIOD_MS); } // show the connection screen while (!module->startup_done) { _update_connection(module); vTaskDelay(1000 / portTICK_PERIOD_MS); } while (1) { _clear_display(); module->screen_page = 0; _update_system_performance(GLOBAL_STATE); vTaskDelay(40000 / portTICK_PERIOD_MS); _clear_display(); module->screen_page = 1; _update_system_info(GLOBAL_STATE); vTaskDelay(10000 / portTICK_PERIOD_MS); _clear_display(); module->screen_page = 2; _update_esp32_info(module); vTaskDelay(10000 / portTICK_PERIOD_MS); } } void SYSTEM_notify_accepted_share(SystemModule * module) { module->shares_accepted++; _update_shares(module); } void SYSTEM_notify_rejected_share(SystemModule * module) { module->shares_rejected++; _update_shares(module); } void SYSTEM_notify_mining_started(SystemModule * module) { module->duration_start = esp_timer_get_time(); } void SYSTEM_notify_new_ntime(SystemModule * module, uint32_t ntime) { // Hourly clock sync if (module->lastClockSync + (60 * 60) > ntime) { return; } ESP_LOGI(TAG, "Syncing clock"); module->lastClockSync = ntime; struct timeval tv; tv.tv_sec = ntime; tv.tv_usec = 0; settimeofday(&tv, NULL); } void SYSTEM_notify_found_nonce(SystemModule * module, double pool_diff, double found_diff, uint32_t nbits, float power) { // Calculate the time difference in seconds with sub-second precision // hashrate = (nonce_difficulty * 2^32) / time_to_find module->historical_hashrate[module->historical_hashrate_rolling_index] = pool_diff; module->historical_hashrate_time_stamps[module->historical_hashrate_rolling_index] = esp_timer_get_time(); module->historical_hashrate_rolling_index = (module->historical_hashrate_rolling_index + 1) % HISTORY_LENGTH; // ESP_LOGI(TAG, "nonce_diff %.1f, ttf %.1f, res %.1f", nonce_diff, duration, // historical_hashrate[historical_hashrate_rolling_index]); if (module->historical_hashrate_init < HISTORY_LENGTH) { module->historical_hashrate_init++; } else { module->duration_start = module->historical_hashrate_time_stamps[(module->historical_hashrate_rolling_index + 1) % HISTORY_LENGTH]; } double sum = 0; for (int i = 0; i < module->historical_hashrate_init; i++) { sum += module->historical_hashrate[i]; } double duration = (double) (esp_timer_get_time() - module->duration_start) / 1000000; double rolling_rate = (sum * 4294967296) / (duration * 1000000000); if (module->historical_hashrate_init < HISTORY_LENGTH) { module->current_hashrate = rolling_rate; } else { // More smoothing module->current_hashrate = ((module->current_hashrate * 9) + rolling_rate) / 10; } _update_hashrate(module, power); // logArrayContents(historical_hashrate, HISTORY_LENGTH); // logArrayContents(historical_hashrate_time_stamps, HISTORY_LENGTH); _check_for_best_diff(module, found_diff, nbits); }