#include "bm1368.h" #include "crc.h" #include "global_state.h" #include "serial.h" #include "utils.h" #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include #include #include #include #include #define GPIO_ASIC_RESET CONFIG_GPIO_ASIC_RESET #define TYPE_JOB 0x20 #define TYPE_CMD 0x40 #define GROUP_SINGLE 0x00 #define GROUP_ALL 0x10 #define CMD_JOB 0x01 #define CMD_SETADDRESS 0x00 #define CMD_WRITE 0x01 #define CMD_READ 0x02 #define CMD_INACTIVE 0x03 #define RESPONSE_CMD 0x00 #define RESPONSE_JOB 0x80 #define SLEEP_TIME 20 #define FREQ_MULT 25.0 #define CLOCK_ORDER_CONTROL_0 0x80 #define CLOCK_ORDER_CONTROL_1 0x84 #define ORDERED_CLOCK_ENABLE 0x20 #define CORE_REGISTER_CONTROL 0x3C #define PLL3_PARAMETER 0x68 #define FAST_UART_CONFIGURATION 0x28 #define TICKET_MASK 0x14 #define MISC_CONTROL 0x18 #define BM1368_TIMEOUT_MS 10000 #define BM1368_TIMEOUT_THRESHOLD 2 typedef struct __attribute__((__packed__)) { uint8_t preamble[2]; uint32_t nonce; uint8_t midstate_num; uint8_t job_id; uint16_t version; uint8_t crc; } asic_result; static const char * TAG = "bm1368Module"; static uint8_t asic_response_buffer[CHUNK_SIZE]; static task_result result; static float current_frequency = 56.25; static void _send_BM1368(uint8_t header, uint8_t * data, uint8_t data_len, bool debug) { packet_type_t packet_type = (header & TYPE_JOB) ? JOB_PACKET : CMD_PACKET; uint8_t total_length = (packet_type == JOB_PACKET) ? (data_len + 6) : (data_len + 5); unsigned char * buf = malloc(total_length); buf[0] = 0x55; buf[1] = 0xAA; buf[2] = header; buf[3] = (packet_type == JOB_PACKET) ? (data_len + 4) : (data_len + 3); memcpy(buf + 4, data, data_len); if (packet_type == JOB_PACKET) { uint16_t crc16_total = crc16_false(buf + 2, data_len + 2); buf[4 + data_len] = (crc16_total >> 8) & 0xFF; buf[5 + data_len] = crc16_total & 0xFF; } else { buf[4 + data_len] = crc5(buf + 2, data_len + 2); } SERIAL_send(buf, total_length, debug); free(buf); } static void _send_simple(uint8_t * data, uint8_t total_length) { unsigned char * buf = malloc(total_length); memcpy(buf, data, total_length); SERIAL_send(buf, total_length, BM1368_SERIALTX_DEBUG); free(buf); } static void _send_chain_inactive(void) { unsigned char read_address[2] = {0x00, 0x00}; _send_BM1368((TYPE_CMD | GROUP_ALL | CMD_INACTIVE), read_address, 2, BM1368_SERIALTX_DEBUG); } static void _set_chip_address(uint8_t chipAddr) { unsigned char read_address[2] = {chipAddr, 0x00}; _send_BM1368((TYPE_CMD | GROUP_SINGLE | CMD_SETADDRESS), read_address, 2, BM1368_SERIALTX_DEBUG); } void BM1368_set_version_mask(uint32_t version_mask) { int versions_to_roll = version_mask >> 13; uint8_t version_byte0 = (versions_to_roll >> 8); uint8_t version_byte1 = (versions_to_roll & 0xFF); uint8_t version_cmd[] = {0x00, 0xA4, 0x90, 0x00, version_byte0, version_byte1}; _send_BM1368(TYPE_CMD | GROUP_ALL | CMD_WRITE, version_cmd, 6, BM1368_SERIALTX_DEBUG); } static void _reset(void) { gpio_set_level(GPIO_ASIC_RESET, 0); vTaskDelay(100 / portTICK_PERIOD_MS); gpio_set_level(GPIO_ASIC_RESET, 1); vTaskDelay(100 / portTICK_PERIOD_MS); } bool BM1368_send_hash_frequency(float target_freq) { float max_diff = 0.001; uint8_t freqbuf[6] = {0x00, 0x08, 0x40, 0xA0, 0x02, 0x41}; uint8_t postdiv_min = 255; uint8_t postdiv2_min = 255; float best_freq = 0; uint8_t best_refdiv = 0, best_fbdiv = 0, best_postdiv1 = 0, best_postdiv2 = 0; bool found = false; for (uint8_t refdiv = 2; refdiv > 0; refdiv--) { for (uint8_t postdiv1 = 7; postdiv1 > 0; postdiv1--) { for (uint8_t postdiv2 = 7; postdiv2 > 0; postdiv2--) { uint16_t fb_divider = round(target_freq / 25.0 * (refdiv * postdiv2 * postdiv1)); float newf = 25.0 * fb_divider / (refdiv * postdiv2 * postdiv1); if (fb_divider >= 144 && fb_divider <= 235 && fabs(target_freq - newf) < max_diff && postdiv1 >= postdiv2 && postdiv1 * postdiv2 < postdiv_min && postdiv2 <= postdiv2_min) { postdiv2_min = postdiv2; postdiv_min = postdiv1 * postdiv2; best_freq = newf; best_refdiv = refdiv; best_fbdiv = fb_divider; best_postdiv1 = postdiv1; best_postdiv2 = postdiv2; found = true; } } } } if (!found) { ESP_LOGE(TAG, "Didn't find PLL settings for target frequency %.2f", target_freq); return false; } freqbuf[2] = (best_fbdiv * 25 / best_refdiv >= 2400) ? 0x50 : 0x40; freqbuf[3] = best_fbdiv; freqbuf[4] = best_refdiv; freqbuf[5] = (((best_postdiv1 - 1) & 0xf) << 4) | ((best_postdiv2 - 1) & 0xf); _send_BM1368(TYPE_CMD | GROUP_ALL | CMD_WRITE, freqbuf, sizeof(freqbuf), BM1368_SERIALTX_DEBUG); ESP_LOGI(TAG, "Setting Frequency to %.2fMHz (%.2f)", target_freq, best_freq); current_frequency = target_freq; return true; } bool do_frequency_transition(float target_frequency) { float step = 6.25; float current = current_frequency; float target = target_frequency; float direction = (target > current) ? step : -step; if (fmod(current, step) != 0) { float next_dividable; if (direction > 0) { next_dividable = ceil(current / step) * step; } else { next_dividable = floor(current / step) * step; } current = next_dividable; BM1368_send_hash_frequency(current); vTaskDelay(100 / portTICK_PERIOD_MS); } while ((direction > 0 && current < target) || (direction < 0 && current > target)) { float next_step = fmin(fabs(direction), fabs(target - current)); current += direction > 0 ? next_step : -next_step; BM1368_send_hash_frequency(current); vTaskDelay(100 / portTICK_PERIOD_MS); } BM1368_send_hash_frequency(target); return true; } bool BM1368_set_frequency(float target_freq) { return do_frequency_transition(target_freq); } static int count_asic_chips(void) { _send_BM1368(TYPE_CMD | GROUP_ALL | CMD_READ, (uint8_t[]){0x00, 0x00}, 2, false); int chip_counter = 0; while (true) { if (SERIAL_rx(asic_response_buffer, 11, 5000) <= 0) { break; } if (memcmp(asic_response_buffer, "\xaa\x55\x13\x68\x00\x00", 6) == 0) { chip_counter++; } } _send_chain_inactive(); return chip_counter; } static void do_frequency_ramp_up(float target_frequency) { ESP_LOGI(TAG, "Ramping up frequency from %.2f MHz to %.2f MHz", current_frequency, target_frequency); do_frequency_transition(target_frequency); } uint8_t BM1368_init(uint64_t frequency, uint16_t asic_count) { ESP_LOGI(TAG, "Initializing BM1368"); memset(asic_response_buffer, 0, CHUNK_SIZE); esp_rom_gpio_pad_select_gpio(GPIO_ASIC_RESET); gpio_set_direction(GPIO_ASIC_RESET, GPIO_MODE_OUTPUT); _reset(); // set version mask for (int i = 0; i < 4; i++) { BM1368_set_version_mask(STRATUM_DEFAULT_VERSION_MASK); } int chip_counter = count_asic_chips(); if (chip_counter != asic_count) { ESP_LOGE(TAG, "Chip count mismatch. Expected: %d, Actual: %d", asic_count, chip_counter); return 0; } uint8_t init_cmds[][6] = { {0x00, 0xA8, 0x00, 0x07, 0x00, 0x00}, {0x00, 0x18, 0xFF, 0x0F, 0xC1, 0x00}, {0x00, 0x3C, 0x80, 0x00, 0x8b, 0x00}, {0x00, 0x3C, 0x80, 0x00, 0x80, 0x18}, {0x00, 0x14, 0x00, 0x00, 0x00, 0xFF}, {0x00, 0x54, 0x00, 0x00, 0x00, 0x03}, //Analog Mux {0x00, 0x58, 0x02, 0x11, 0x11, 0x11} }; for (int i = 0; i < sizeof(init_cmds) / sizeof(init_cmds[0]); i++) { _send_BM1368(TYPE_CMD | GROUP_ALL | CMD_WRITE, init_cmds[i], 6, false); } uint8_t address_interval = (uint8_t) (256 / chip_counter); for (int i = 0; i < chip_counter; i++) { _set_chip_address(i * address_interval); } for (int i = 0; i < chip_counter; i++) { uint8_t chip_init_cmds[][6] = { {i * address_interval, 0xA8, 0x00, 0x07, 0x01, 0xF0}, {i * address_interval, 0x18, 0xF0, 0x00, 0xC1, 0x00}, {i * address_interval, 0x3C, 0x80, 0x00, 0x8b, 0x00}, {i * address_interval, 0x3C, 0x80, 0x00, 0x80, 0x18}, {i * address_interval, 0x3C, 0x80, 0x00, 0x82, 0xAA} }; for (int j = 0; j < sizeof(chip_init_cmds) / sizeof(chip_init_cmds[0]); j++) { _send_BM1368(TYPE_CMD | GROUP_SINGLE | CMD_WRITE, chip_init_cmds[j], 6, false); } vTaskDelay(pdMS_TO_TICKS(500)); } BM1368_set_job_difficulty_mask(BM1368_ASIC_DIFFICULTY); do_frequency_ramp_up((float)frequency); _send_BM1368(TYPE_CMD | GROUP_ALL | CMD_WRITE, (uint8_t[]){0x00, 0x10, 0x00, 0x00, 0x15, 0xa4}, 6, false); BM1368_set_version_mask(STRATUM_DEFAULT_VERSION_MASK); ESP_LOGI(TAG, "%i chip(s) detected on the chain, expected %i", chip_counter, asic_count); return chip_counter; } int BM1368_set_default_baud(void) { unsigned char baudrate[9] = {0x00, MISC_CONTROL, 0x00, 0x00, 0b01111010, 0b00110001}; _send_BM1368((TYPE_CMD | GROUP_ALL | CMD_WRITE), baudrate, 6, BM1368_SERIALTX_DEBUG); return 115749; } int BM1368_set_max_baud(void) { ESP_LOGI(TAG, "Setting max baud of 1000000"); unsigned char init8[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0x28, 0x11, 0x30, 0x02, 0x00, 0x03}; _send_simple(init8, 11); return 1000000; } void BM1368_set_job_difficulty_mask(int difficulty) { unsigned char job_difficulty_mask[9] = {0x00, TICKET_MASK, 0b00000000, 0b00000000, 0b00000000, 0b11111111}; difficulty = _largest_power_of_two(difficulty) - 1; for (int i = 0; i < 4; i++) { char value = (difficulty >> (8 * i)) & 0xFF; job_difficulty_mask[5 - i] = _reverse_bits(value); } ESP_LOGI(TAG, "Setting job ASIC mask to %d", difficulty); _send_BM1368((TYPE_CMD | GROUP_ALL | CMD_WRITE), job_difficulty_mask, 6, BM1368_SERIALTX_DEBUG); } static uint8_t id = 0; void BM1368_send_work(void * pvParameters, bm_job * next_bm_job) { GlobalState * GLOBAL_STATE = (GlobalState *) pvParameters; BM1368_job job; id = (id + 24) % 128; job.job_id = id; job.num_midstates = 0x01; memcpy(&job.starting_nonce, &next_bm_job->starting_nonce, 4); memcpy(&job.nbits, &next_bm_job->target, 4); memcpy(&job.ntime, &next_bm_job->ntime, 4); memcpy(job.merkle_root, next_bm_job->merkle_root_be, 32); memcpy(job.prev_block_hash, next_bm_job->prev_block_hash_be, 32); memcpy(&job.version, &next_bm_job->version, 4); if (GLOBAL_STATE->ASIC_TASK_MODULE.active_jobs[job.job_id] != NULL) { free_bm_job(GLOBAL_STATE->ASIC_TASK_MODULE.active_jobs[job.job_id]); } GLOBAL_STATE->ASIC_TASK_MODULE.active_jobs[job.job_id] = next_bm_job; pthread_mutex_lock(&GLOBAL_STATE->valid_jobs_lock); GLOBAL_STATE->valid_jobs[job.job_id] = 1; pthread_mutex_unlock(&GLOBAL_STATE->valid_jobs_lock); #if BM1368_DEBUG_JOBS ESP_LOGI(TAG, "Send Job: %02X", job.job_id); #endif _send_BM1368((TYPE_JOB | GROUP_SINGLE | CMD_WRITE), (uint8_t *)&job, sizeof(BM1368_job), BM1368_DEBUG_WORK); } asic_result * BM1368_receive_work(void) { // wait for a response int received = SERIAL_rx(asic_response_buffer, 11, BM1368_TIMEOUT_MS); bool uart_err = received < 0; bool uart_timeout = received == 0; uint8_t asic_timeout_counter = 0; // handle response if (uart_err) { ESP_LOGI(TAG, "UART Error in serial RX"); return NULL; } else if (uart_timeout) { if (asic_timeout_counter >= BM1368_TIMEOUT_THRESHOLD) { ESP_LOGE(TAG, "ASIC not sending data"); asic_timeout_counter = 0; } asic_timeout_counter++; return NULL; } if (received != 11 || asic_response_buffer[0] != 0xAA || asic_response_buffer[1] != 0x55) { ESP_LOGE(TAG, "Serial RX invalid %i", received); ESP_LOG_BUFFER_HEX(TAG, asic_response_buffer, received); SERIAL_clear_buffer(); return NULL; } return (asic_result *) asic_response_buffer; } static uint16_t reverse_uint16(uint16_t num) { return (num >> 8) | (num << 8); } static uint32_t reverse_uint32(uint32_t val) { return ((val >> 24) & 0xff) | ((val << 8) & 0xff0000) | ((val >> 8) & 0xff00) | ((val << 24) & 0xff000000); } task_result * BM1368_proccess_work(void * pvParameters) { asic_result * asic_result = BM1368_receive_work(); if (asic_result == NULL) { return NULL; } uint8_t job_id = (asic_result->job_id & 0xf0) >> 1; uint8_t core_id = (uint8_t)((reverse_uint32(asic_result->nonce) >> 25) & 0x7f); uint8_t small_core_id = asic_result->job_id & 0x0f; uint32_t version_bits = (reverse_uint16(asic_result->version) << 13); ESP_LOGI(TAG, "Job ID: %02X, Core: %d/%d, Ver: %08" PRIX32, job_id, core_id, small_core_id, version_bits); GlobalState * GLOBAL_STATE = (GlobalState *) pvParameters; if (GLOBAL_STATE->valid_jobs[job_id] == 0) { ESP_LOGE(TAG, "Invalid job found, 0x%02X", job_id); return NULL; } uint32_t rolled_version = GLOBAL_STATE->ASIC_TASK_MODULE.active_jobs[job_id]->version | version_bits; result.job_id = job_id; result.nonce = asic_result->nonce; result.rolled_version = rolled_version; return &result; }