#include "roger.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #include "../blocks/custom_btn_i.h" #define TAG "SubGhzProtocolRoger" static const SubGhzBlockConst subghz_protocol_roger_const = { .te_short = 500, .te_long = 1000, .te_delta = 270, .min_count_bit_for_found = 28, }; struct SubGhzProtocolDecoderRoger { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; }; struct SubGhzProtocolEncoderRoger { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { RogerDecoderStepReset = 0, RogerDecoderStepSaveDuration, RogerDecoderStepCheckDuration, } RogerDecoderStep; const SubGhzProtocolDecoder subghz_protocol_roger_decoder = { .alloc = subghz_protocol_decoder_roger_alloc, .free = subghz_protocol_decoder_roger_free, .feed = subghz_protocol_decoder_roger_feed, .reset = subghz_protocol_decoder_roger_reset, .get_hash_data = subghz_protocol_decoder_roger_get_hash_data, .serialize = subghz_protocol_decoder_roger_serialize, .deserialize = subghz_protocol_decoder_roger_deserialize, .get_string = subghz_protocol_decoder_roger_get_string, }; const SubGhzProtocolEncoder subghz_protocol_roger_encoder = { .alloc = subghz_protocol_encoder_roger_alloc, .free = subghz_protocol_encoder_roger_free, .deserialize = subghz_protocol_encoder_roger_deserialize, .stop = subghz_protocol_encoder_roger_stop, .yield = subghz_protocol_encoder_roger_yield, }; const SubGhzProtocol subghz_protocol_roger = { .name = SUBGHZ_PROTOCOL_ROGER_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_roger_decoder, .encoder = &subghz_protocol_roger_encoder, }; void* subghz_protocol_encoder_roger_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderRoger* instance = malloc(sizeof(SubGhzProtocolEncoderRoger)); instance->base.protocol = &subghz_protocol_roger; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 256; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_roger_free(void* context) { furi_assert(context); SubGhzProtocolEncoderRoger* instance = context; free(instance->encoder.upload); free(instance); } // Get custom button code static uint8_t subghz_protocol_roger_get_btn_code(void) { uint8_t custom_btn_id = subghz_custom_btn_get(); uint8_t original_btn_code = subghz_custom_btn_get_original(); uint8_t btn = original_btn_code; // Set custom button if((custom_btn_id == SUBGHZ_CUSTOM_BTN_OK) && (original_btn_code != 0)) { // Restore original button code btn = original_btn_code; } else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_UP) { switch(original_btn_code) { case 0x1: btn = 0x2; break; case 0x2: btn = 0x1; break; case 0x4: btn = 0x1; break; case 0x8: btn = 0x1; break; default: break; } } else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_DOWN) { switch(original_btn_code) { case 0x1: btn = 0x4; break; case 0x2: btn = 0x4; break; case 0x4: btn = 0x2; break; case 0x8: btn = 0x4; break; default: break; } } else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_LEFT) { switch(original_btn_code) { case 0x1: btn = 0x8; break; case 0x2: btn = 0x8; break; case 0x4: btn = 0x8; break; case 0x8: btn = 0x2; break; default: break; } } return btn; } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderRoger instance */ static void subghz_protocol_encoder_roger_get_upload(SubGhzProtocolEncoderRoger* instance) { furi_assert(instance); size_t index = 0; uint8_t btn = instance->generic.btn; // Save original button for later use if(subghz_custom_btn_get_original() == 0) { subghz_custom_btn_set_original(btn); } // Get custom button code // This will override the btn variable if a custom button is set btn = subghz_protocol_roger_get_btn_code(); // If End is not == button - transmit as is, no custom button allowed // For "End" values 23 and 20 - transmit correct ending used for their buttons if((instance->generic.data & 0xFF) == instance->generic.btn) { instance->generic.data = (uint64_t)instance->generic.serial << 12 | ((uint64_t)btn << 8) | btn; } else if(((instance->generic.data & 0xFF) == 0x23) && btn == 0x1) { instance->generic.data = (uint64_t)instance->generic.serial << 12 | ((uint64_t)btn << 8) | 0x20; } else if(((instance->generic.data & 0xFF) == 0x20) && btn == 0x2) { instance->generic.data = (uint64_t)instance->generic.serial << 12 | ((uint64_t)btn << 8) | 0x23; } // Send key and GAP for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(bit_read(instance->generic.data, i - 1)) { // Send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_roger_const.te_long); if(i == 1) { //Send gap if bit was last instance->encoder.upload[index++] = level_duration_make( false, (uint32_t)subghz_protocol_roger_const.te_short * 19); } else { instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_roger_const.te_short); } } else { // Send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_roger_const.te_short); if(i == 1) { //Send gap if bit was last instance->encoder.upload[index++] = level_duration_make( false, (uint32_t)subghz_protocol_roger_const.te_short * 19); } else { instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_roger_const.te_long); } } } instance->encoder.size_upload = index; return; } /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance */ static void subghz_protocol_roger_check_remote_controller(SubGhzBlockGeneric* instance) { // Roger Decoder // 2025.07 - @xMasterX (MMX) // Key samples // 0010001111111001 0001 00100000 // S/N: 0x23F9 Btn: 0x1 End: 0x20 // 0010001111111001 0010 00100011 // S/N: 0x23F9 Btn: 0x2 End: 0x23 // 0101011001010110 0001 00000001 // S/N: 0x5656 Btn: 0x1 End: 0x01 // 0101011001010110 0010 00000010 // S/N: 0x5656 Btn: 0x2 End: 0x02 // 0000110111111110 0001 00000001 // S/N: 0x0DFE Btn: 0x1 End: 0x01 // 0000110111111110 0100 00000100 // S/N: 0x0DFE Btn: 0x4 End: 0x04 // 0000110111111110 0010 00000010 // S/N: 0x0DFE Btn: 0x2 End: 0x02 // 0000110111111110 1000 00001000 // S/N: 0x0DFE Btn: 0x8 End: 0x08 instance->serial = instance->data >> 12; instance->btn = (instance->data >> 8) & 0xF; // Save original button for later use if(subghz_custom_btn_get_original() == 0) { subghz_custom_btn_set_original(instance->btn); } subghz_custom_btn_set_max(3); } SubGhzProtocolStatus subghz_protocol_encoder_roger_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderRoger* instance = context; SubGhzProtocolStatus ret = SubGhzProtocolStatusError; do { ret = subghz_block_generic_deserialize_check_count_bit( &instance->generic, flipper_format, subghz_protocol_roger_const.min_count_bit_for_found); if(ret != SubGhzProtocolStatusOk) { break; } //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); subghz_protocol_roger_check_remote_controller(&instance->generic); subghz_protocol_encoder_roger_get_upload(instance); instance->encoder.front = 0; uint8_t key_data[sizeof(uint64_t)] = {0}; for(size_t i = 0; i < sizeof(uint64_t); i++) { key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF; } if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Unable to add Key"); break; } instance->encoder.is_running = true; } while(false); return ret; } void subghz_protocol_encoder_roger_stop(void* context) { SubGhzProtocolEncoderRoger* instance = context; instance->encoder.is_running = false; instance->encoder.front = 0; } LevelDuration subghz_protocol_encoder_roger_yield(void* context) { SubGhzProtocolEncoderRoger* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_roger_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderRoger* instance = malloc(sizeof(SubGhzProtocolDecoderRoger)); instance->base.protocol = &subghz_protocol_roger; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_roger_free(void* context) { furi_assert(context); SubGhzProtocolDecoderRoger* instance = context; free(instance); } void subghz_protocol_decoder_roger_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderRoger* instance = context; instance->decoder.parser_step = RogerDecoderStepReset; } void subghz_protocol_decoder_roger_feed(void* context, bool level, volatile uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderRoger* instance = context; switch(instance->decoder.parser_step) { case RogerDecoderStepReset: if((!level) && (DURATION_DIFF(duration, subghz_protocol_roger_const.te_short * 19) < subghz_protocol_roger_const.te_delta * 5)) { //Found GAP instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->decoder.parser_step = RogerDecoderStepSaveDuration; } break; case RogerDecoderStepSaveDuration: if(level) { instance->decoder.te_last = duration; instance->decoder.parser_step = RogerDecoderStepCheckDuration; } else { instance->decoder.parser_step = RogerDecoderStepReset; } break; case RogerDecoderStepCheckDuration: if(!level) { // Bit 1 is long and short timing = 1000us HIGH (te_last) and 500us LOW if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_roger_const.te_long) < subghz_protocol_roger_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_roger_const.te_short) < subghz_protocol_roger_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = RogerDecoderStepSaveDuration; // Bit 0 is short and long timing = 500us HIGH (te_last) and 1000us LOW } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_roger_const.te_short) < subghz_protocol_roger_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_roger_const.te_long) < subghz_protocol_roger_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = RogerDecoderStepSaveDuration; } else if( // End of the key DURATION_DIFF(duration, subghz_protocol_roger_const.te_short * 19) < subghz_protocol_roger_const.te_delta * 5) { //Found next GAP and add bit 1 or 0 if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_roger_const.te_long) < subghz_protocol_roger_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); } if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_roger_const.te_short) < subghz_protocol_roger_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); } // If got full 28 bits key reading is finished if(instance->decoder.decode_count_bit == subghz_protocol_roger_const.min_count_bit_for_found) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->decoder.parser_step = RogerDecoderStepReset; } else { instance->decoder.parser_step = RogerDecoderStepReset; } } else { instance->decoder.parser_step = RogerDecoderStepReset; } break; } } uint8_t subghz_protocol_decoder_roger_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderRoger* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } SubGhzProtocolStatus subghz_protocol_decoder_roger_serialize( void* context, FlipperFormat* flipper_format, SubGhzRadioPreset* preset) { furi_assert(context); SubGhzProtocolDecoderRoger* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } SubGhzProtocolStatus subghz_protocol_decoder_roger_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderRoger* instance = context; return subghz_block_generic_deserialize_check_count_bit( &instance->generic, flipper_format, subghz_protocol_roger_const.min_count_bit_for_found); } void subghz_protocol_decoder_roger_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderRoger* instance = context; subghz_protocol_roger_check_remote_controller(&instance->generic); furi_string_cat_printf( output, "%s %db\r\n" "Key: 0x%07lX\r\n" "Serial: 0x%04lX\r\n" "End: 0x%02lX\r\n" "Btn: %01X", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->generic.data & 0xFFFFFFF), instance->generic.serial, (uint32_t)(instance->generic.data & 0xFF), instance->generic.btn); }