#include "crypto1.h" #include #include #include // Algorithm from https://github.com/RfidResearchGroup/proxmark3.git #define SWAPENDIAN(x) \ ((x) = ((x) >> 8 & 0xff00ff) | ((x) & 0xff00ff) << 8, (x) = (x) >> 16 | (x) << 16) #define LF_POLY_ODD (0x29CE5C) #define LF_POLY_EVEN (0x870804) #define BEBIT(x, n) FURI_BIT(x, (n) ^ 24) Crypto1* crypto1_alloc(void) { Crypto1* instance = malloc(sizeof(Crypto1)); return instance; } void crypto1_free(Crypto1* instance) { furi_assert(instance); free(instance); } void crypto1_reset(Crypto1* crypto1) { furi_assert(crypto1); crypto1->even = 0; crypto1->odd = 0; } void crypto1_init(Crypto1* crypto1, uint64_t key) { furi_assert(crypto1); crypto1->even = 0; crypto1->odd = 0; for(int8_t i = 47; i > 0; i -= 2) { crypto1->odd = crypto1->odd << 1 | FURI_BIT(key, (i - 1) ^ 7); crypto1->even = crypto1->even << 1 | FURI_BIT(key, i ^ 7); } } static uint32_t crypto1_filter(uint32_t in) { uint32_t out = 0; out = 0xf22c0 >> (in & 0xf) & 16; out |= 0x6c9c0 >> (in >> 4 & 0xf) & 8; out |= 0x3c8b0 >> (in >> 8 & 0xf) & 4; out |= 0x1e458 >> (in >> 12 & 0xf) & 2; out |= 0x0d938 >> (in >> 16 & 0xf) & 1; return FURI_BIT(0xEC57E80A, out); } uint8_t crypto1_bit(Crypto1* crypto1, uint8_t in, int is_encrypted) { furi_assert(crypto1); uint8_t out = crypto1_filter(crypto1->odd); uint32_t feed = out & (!!is_encrypted); feed ^= !!in; feed ^= LF_POLY_ODD & crypto1->odd; feed ^= LF_POLY_EVEN & crypto1->even; crypto1->even = crypto1->even << 1 | (nfc_util_even_parity32(feed)); FURI_SWAP(crypto1->odd, crypto1->even); return out; } uint8_t crypto1_byte(Crypto1* crypto1, uint8_t in, int is_encrypted) { furi_assert(crypto1); uint8_t out = 0; for(uint8_t i = 0; i < 8; i++) { out |= crypto1_bit(crypto1, FURI_BIT(in, i), is_encrypted) << i; } return out; } uint32_t crypto1_word(Crypto1* crypto1, uint32_t in, int is_encrypted) { furi_assert(crypto1); uint32_t out = 0; for(uint8_t i = 0; i < 32; i++) { out |= (uint32_t)crypto1_bit(crypto1, BEBIT(in, i), is_encrypted) << (24 ^ i); } return out; } uint32_t crypto1_prng_successor(uint32_t x, uint32_t n) { SWAPENDIAN(x); while(n--) x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31; return SWAPENDIAN(x); } void crypto1_decrypt(Crypto1* crypto, const BitBuffer* buff, BitBuffer* out) { furi_assert(crypto); furi_assert(buff); furi_assert(out); size_t bits = bit_buffer_get_size(buff); bit_buffer_set_size(out, bits); const uint8_t* encrypted_data = bit_buffer_get_data(buff); if(bits < 8) { uint8_t decrypted_byte = 0; uint8_t encrypted_byte = encrypted_data[0]; decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_byte, 0)) << 0; decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_byte, 1)) << 1; decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_byte, 2)) << 2; decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_byte, 3)) << 3; bit_buffer_set_byte(out, 0, decrypted_byte); } else { for(size_t i = 0; i < bits / 8; i++) { uint8_t decrypted_byte = crypto1_byte(crypto, 0, 0) ^ encrypted_data[i]; bit_buffer_set_byte(out, i, decrypted_byte); } } } void crypto1_encrypt(Crypto1* crypto, uint8_t* keystream, const BitBuffer* buff, BitBuffer* out) { furi_assert(crypto); furi_assert(buff); furi_assert(out); size_t bits = bit_buffer_get_size(buff); bit_buffer_set_size(out, bits); const uint8_t* plain_data = bit_buffer_get_data(buff); if(bits < 8) { uint8_t encrypted_byte = 0; for(size_t i = 0; i < bits; i++) { encrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(plain_data[0], i)) << i; } bit_buffer_set_byte(out, 0, encrypted_byte); } else { for(size_t i = 0; i < bits / 8; i++) { uint8_t encrypted_byte = crypto1_byte(crypto, keystream ? keystream[i] : 0, 0) ^ plain_data[i]; bool parity_bit = ((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(plain_data[i])) & 0x01); bit_buffer_set_byte_with_parity(out, i, encrypted_byte, parity_bit); } } } void crypto1_encrypt_reader_nonce( Crypto1* crypto, uint64_t key, uint32_t cuid, uint8_t* nt, uint8_t* nr, BitBuffer* out, bool is_nested) { furi_assert(crypto); furi_assert(nt); furi_assert(nr); furi_assert(out); bit_buffer_set_size_bytes(out, 8); uint32_t nt_num = bit_lib_bytes_to_num_be(nt, sizeof(uint32_t)); crypto1_init(crypto, key); if(is_nested) { nt_num = crypto1_word(crypto, nt_num ^ cuid, 1) ^ nt_num; } else { crypto1_word(crypto, nt_num ^ cuid, 0); } for(size_t i = 0; i < 4; i++) { uint8_t byte = crypto1_byte(crypto, nr[i], 0) ^ nr[i]; bool parity_bit = ((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nr[i])) & 0x01); bit_buffer_set_byte_with_parity(out, i, byte, parity_bit); nr[i] = byte; } nt_num = crypto1_prng_successor(nt_num, 32); for(size_t i = 4; i < 8; i++) { nt_num = crypto1_prng_successor(nt_num, 8); uint8_t byte = crypto1_byte(crypto, 0, 0) ^ (uint8_t)(nt_num); bool parity_bit = ((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nt_num)) & 0x01); bit_buffer_set_byte_with_parity(out, i, byte, parity_bit); } } static uint8_t lfsr_rollback_bit(Crypto1* crypto1, uint32_t in, int fb) { int out; uint8_t ret; uint32_t t; crypto1->odd &= 0xffffff; t = crypto1->odd; crypto1->odd = crypto1->even; crypto1->even = t; out = crypto1->even & 1; out ^= LF_POLY_EVEN & (crypto1->even >>= 1); out ^= LF_POLY_ODD & crypto1->odd; out ^= !!in; out ^= (ret = crypto1_filter(crypto1->odd)) & (!!fb); crypto1->even |= (nfc_util_even_parity32(out)) << 23; return ret; } uint32_t crypto1_lfsr_rollback_word(Crypto1* crypto1, uint32_t in, int fb) { uint32_t ret = 0; for(int i = 31; i >= 0; i--) { ret |= lfsr_rollback_bit(crypto1, BEBIT(in, i), fb) << (24 ^ i); } return ret; } bool crypto1_nonce_matches_encrypted_parity_bits(uint32_t nt, uint32_t ks, uint8_t nt_par_enc) { return (nfc_util_even_parity8((nt >> 24) & 0xFF) == (((nt_par_enc >> 3) & 1) ^ FURI_BIT(ks, 16))) && (nfc_util_even_parity8((nt >> 16) & 0xFF) == (((nt_par_enc >> 2) & 1) ^ FURI_BIT(ks, 8))) && (nfc_util_even_parity8((nt >> 8) & 0xFF) == (((nt_par_enc >> 1) & 1) ^ FURI_BIT(ks, 0))); } bool crypto1_is_weak_prng_nonce(uint32_t nonce) { if(nonce == 0) return false; uint16_t x = nonce >> 16; x = (x & 0xff) << 8 | x >> 8; for(uint8_t i = 0; i < 16; i++) { x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; } x = (x & 0xff) << 8 | x >> 8; return x == (nonce & 0xFFFF); } uint32_t crypto1_decrypt_nt_enc(uint32_t cuid, uint32_t nt_enc, MfClassicKey known_key) { uint64_t known_key_int = bit_lib_bytes_to_num_be(known_key.data, 6); Crypto1 crypto_temp; crypto1_init(&crypto_temp, known_key_int); crypto1_word(&crypto_temp, nt_enc ^ cuid, 1); uint32_t decrypted_nt_enc = (nt_enc ^ crypto1_lfsr_rollback_word(&crypto_temp, nt_enc ^ cuid, 1)); return decrypted_nt_enc; }