Convert remaining comments in /src to doxygen format

- Update comments in checkpoints to be doxygen compatible
- Update comments in checkqueue to be doxygen compatible
- Update coins to be doxygen compatible
- Fix comment typo in crypter.h
- Update licenses/copyright dates

Closes #5325 #5184 #5183 #5182
This commit is contained in:
Michael Ford
2014-10-31 08:43:19 +08:00
committed by Wladimir J. van der Laan
parent f2ada138c2
commit fa94b9d562
19 changed files with 269 additions and 225 deletions

View File

@@ -1,6 +1,6 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UINT256_H
@@ -255,8 +255,10 @@ public:
return sizeof(pn);
}
// Returns the position of the highest bit set plus one, or zero if the
// value is zero.
/**
* Returns the position of the highest bit set plus one, or zero if the
* value is zero.
*/
unsigned int bits() const;
uint64_t GetLow64() const
@@ -301,26 +303,27 @@ public:
uint256(uint64_t b) : base_uint<256>(b) {}
explicit uint256(const std::string& str) : base_uint<256>(str) {}
explicit uint256(const std::vector<unsigned char>& vch) : base_uint<256>(vch) {}
// The "compact" format is a representation of a whole
// number N using an unsigned 32bit number similar to a
// floating point format.
// The most significant 8 bits are the unsigned exponent of base 256.
// This exponent can be thought of as "number of bytes of N".
// The lower 23 bits are the mantissa.
// Bit number 24 (0x800000) represents the sign of N.
// N = (-1^sign) * mantissa * 256^(exponent-3)
//
// Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
// MPI uses the most significant bit of the first byte as sign.
// Thus 0x1234560000 is compact (0x05123456)
// and 0xc0de000000 is compact (0x0600c0de)
// (0x05c0de00) would be -0x40de000000
//
// Bitcoin only uses this "compact" format for encoding difficulty
// targets, which are unsigned 256bit quantities. Thus, all the
// complexities of the sign bit and using base 256 are probably an
// implementation accident.
/**
* The "compact" format is a representation of a whole
* number N using an unsigned 32bit number similar to a
* floating point format.
* The most significant 8 bits are the unsigned exponent of base 256.
* This exponent can be thought of as "number of bytes of N".
* The lower 23 bits are the mantissa.
* Bit number 24 (0x800000) represents the sign of N.
* N = (-1^sign) * mantissa * 256^(exponent-3)
*
* Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
* MPI uses the most significant bit of the first byte as sign.
* Thus 0x1234560000 is compact (0x05123456)
* and 0xc0de000000 is compact (0x0600c0de)
*
* Bitcoin only uses this "compact" format for encoding difficulty
* targets, which are unsigned 256bit quantities. Thus, all the
* complexities of the sign bit and using base 256 are probably an
* implementation accident.
*/
uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL);
uint32_t GetCompact(bool fNegative = false) const;