// Copyright (c) 2012-present The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include using namespace std::string_literals; using namespace util::hex_literals; BOOST_FIXTURE_TEST_SUITE(streams_tests, BasicTestingSetup) // Check optimized obfuscation with random offsets and sizes to ensure proper // handling of key wrapping. Also verify it roundtrips. BOOST_AUTO_TEST_CASE(xor_random_chunks) { auto apply_random_xor_chunks{[&](std::span target, const Obfuscation& obfuscation) { for (size_t offset{0}; offset < target.size();) { const size_t chunk_size{1 + m_rng.randrange(target.size() - offset)}; obfuscation(target.subspan(offset, chunk_size), offset); offset += chunk_size; } }}; for (size_t test{0}; test < 100; ++test) { const size_t write_size{1 + m_rng.randrange(100U)}; const std::vector original{m_rng.randbytes(write_size)}; std::vector roundtrip{original}; const auto key_bytes{m_rng.randbool() ? m_rng.randbytes() : std::array{}}; const Obfuscation obfuscation{key_bytes}; apply_random_xor_chunks(roundtrip, obfuscation); BOOST_CHECK_EQUAL(roundtrip.size(), original.size()); for (size_t i{0}; i < original.size(); ++i) { BOOST_CHECK_EQUAL(roundtrip[i], original[i] ^ key_bytes[i % Obfuscation::KEY_SIZE]); } apply_random_xor_chunks(roundtrip, obfuscation); BOOST_CHECK_EQUAL_COLLECTIONS(roundtrip.begin(), roundtrip.end(), original.begin(), original.end()); } } BOOST_AUTO_TEST_CASE(obfuscation_hexkey) { const auto key_bytes{m_rng.randbytes()}; const Obfuscation obfuscation{key_bytes}; BOOST_CHECK_EQUAL(obfuscation.HexKey(), HexStr(key_bytes)); } BOOST_AUTO_TEST_CASE(obfuscation_serialize) { Obfuscation obfuscation{}; BOOST_CHECK(!obfuscation); // Test loading a key. std::vector key_in{m_rng.randbytes(Obfuscation::KEY_SIZE)}; DataStream ds_in; ds_in << key_in; BOOST_CHECK_EQUAL(ds_in.size(), 1 + Obfuscation::KEY_SIZE); // serialized as a vector ds_in >> obfuscation; // Test saving the key. std::vector key_out; DataStream ds_out; ds_out << obfuscation; ds_out >> key_out; // Make sure saved key is the same. BOOST_CHECK_EQUAL_COLLECTIONS(key_in.begin(), key_in.end(), key_out.begin(), key_out.end()); } BOOST_AUTO_TEST_CASE(obfuscation_empty) { const Obfuscation null_obf{}; BOOST_CHECK(!null_obf); const Obfuscation non_null_obf{"ff00ff00ff00ff00"_hex}; BOOST_CHECK(non_null_obf); } BOOST_AUTO_TEST_CASE(xor_file) { fs::path xor_path{m_args.GetDataDirBase() / "test_xor.bin"}; auto raw_file{[&](const auto& mode) { return fsbridge::fopen(xor_path, mode); }}; const std::vector test1{1, 2, 3}; const std::vector test2{4, 5}; const Obfuscation obfuscation{"ff00ff00ff00ff00"_hex}; { // Check errors for missing file AutoFile xor_file{raw_file("rb"), obfuscation}; BOOST_CHECK_EXCEPTION(xor_file << std::byte{}, std::ios_base::failure, HasReason{"AutoFile::write: file handle is nullptr"}); BOOST_CHECK_EXCEPTION(xor_file >> std::byte{}, std::ios_base::failure, HasReason{"AutoFile::read: file handle is nullptr"}); BOOST_CHECK_EXCEPTION(xor_file.ignore(1), std::ios_base::failure, HasReason{"AutoFile::ignore: file handle is nullptr"}); } { #ifdef __MINGW64__ // Temporary workaround for https://github.com/bitcoin/bitcoin/issues/30210 const char* mode = "wb"; #else const char* mode = "wbx"; #endif AutoFile xor_file{raw_file(mode), obfuscation}; xor_file << test1 << test2; BOOST_REQUIRE_EQUAL(xor_file.fclose(), 0); } { // Read raw from disk AutoFile non_xor_file{raw_file("rb")}; std::vector raw(7); non_xor_file >> std::span{raw}; BOOST_CHECK_EQUAL(HexStr(raw), "fc01fd03fd04fa"); // Check that no padding exists BOOST_CHECK_EXCEPTION(non_xor_file.ignore(1), std::ios_base::failure, HasReason{"AutoFile::ignore: end of file"}); } { AutoFile xor_file{raw_file("rb"), obfuscation}; std::vector read1, read2; xor_file >> read1 >> read2; BOOST_CHECK_EQUAL(HexStr(read1), HexStr(test1)); BOOST_CHECK_EQUAL(HexStr(read2), HexStr(test2)); // Check that eof was reached BOOST_CHECK_EXCEPTION(xor_file >> std::byte{}, std::ios_base::failure, HasReason{"AutoFile::read: end of file"}); } { AutoFile xor_file{raw_file("rb"), obfuscation}; std::vector read2; // Check that ignore works xor_file.ignore(4); xor_file >> read2; BOOST_CHECK_EQUAL(HexStr(read2), HexStr(test2)); // Check that ignore and read fail now BOOST_CHECK_EXCEPTION(xor_file.ignore(1), std::ios_base::failure, HasReason{"AutoFile::ignore: end of file"}); BOOST_CHECK_EXCEPTION(xor_file >> std::byte{}, std::ios_base::failure, HasReason{"AutoFile::read: end of file"}); } } BOOST_AUTO_TEST_CASE(streams_vector_writer) { unsigned char a(1); unsigned char b(2); unsigned char bytes[] = {3, 4, 5, 6}; std::vector vch; // Each test runs twice. Serializing a second time at the same starting // point should yield the same results, even if the first test grew the // vector. VectorWriter{vch, 0, a, b}; BOOST_CHECK((vch == std::vector{{1, 2}})); VectorWriter{vch, 0, a, b}; BOOST_CHECK((vch == std::vector{{1, 2}})); vch.clear(); VectorWriter{vch, 2, a, b}; BOOST_CHECK((vch == std::vector{{0, 0, 1, 2}})); VectorWriter{vch, 2, a, b}; BOOST_CHECK((vch == std::vector{{0, 0, 1, 2}})); vch.clear(); vch.resize(5, 0); VectorWriter{vch, 2, a, b}; BOOST_CHECK((vch == std::vector{{0, 0, 1, 2, 0}})); VectorWriter{vch, 2, a, b}; BOOST_CHECK((vch == std::vector{{0, 0, 1, 2, 0}})); vch.clear(); vch.resize(4, 0); VectorWriter{vch, 3, a, b}; BOOST_CHECK((vch == std::vector{{0, 0, 0, 1, 2}})); VectorWriter{vch, 3, a, b}; BOOST_CHECK((vch == std::vector{{0, 0, 0, 1, 2}})); vch.clear(); vch.resize(4, 0); VectorWriter{vch, 4, a, b}; BOOST_CHECK((vch == std::vector{{0, 0, 0, 0, 1, 2}})); VectorWriter{vch, 4, a, b}; BOOST_CHECK((vch == std::vector{{0, 0, 0, 0, 1, 2}})); vch.clear(); VectorWriter{vch, 0, bytes}; BOOST_CHECK((vch == std::vector{{3, 4, 5, 6}})); VectorWriter{vch, 0, bytes}; BOOST_CHECK((vch == std::vector{{3, 4, 5, 6}})); vch.clear(); vch.resize(4, 8); VectorWriter{vch, 2, a, bytes, b}; BOOST_CHECK((vch == std::vector{{8, 8, 1, 3, 4, 5, 6, 2}})); VectorWriter{vch, 2, a, bytes, b}; BOOST_CHECK((vch == std::vector{{8, 8, 1, 3, 4, 5, 6, 2}})); vch.clear(); } BOOST_AUTO_TEST_CASE(streams_vector_reader) { std::vector vch = {1, 255, 3, 4, 5, 6}; SpanReader reader{vch}; BOOST_CHECK_EQUAL(reader.size(), 6U); BOOST_CHECK(!reader.empty()); // Read a single byte as an unsigned char. unsigned char a; reader >> a; BOOST_CHECK_EQUAL(a, 1); BOOST_CHECK_EQUAL(reader.size(), 5U); BOOST_CHECK(!reader.empty()); // Read a single byte as a int8_t. int8_t b; reader >> b; BOOST_CHECK_EQUAL(b, -1); BOOST_CHECK_EQUAL(reader.size(), 4U); BOOST_CHECK(!reader.empty()); // Read a 4 bytes as an unsigned int. unsigned int c; reader >> c; BOOST_CHECK_EQUAL(c, 100992003U); // 3,4,5,6 in little-endian base-256 BOOST_CHECK_EQUAL(reader.size(), 0U); BOOST_CHECK(reader.empty()); // Reading after end of byte vector throws an error. signed int d; BOOST_CHECK_THROW(reader >> d, std::ios_base::failure); // Read a 4 bytes as a signed int from the beginning of the buffer. SpanReader new_reader{vch}; new_reader >> d; BOOST_CHECK_EQUAL(d, 67370753); // 1,255,3,4 in little-endian base-256 BOOST_CHECK_EQUAL(new_reader.size(), 2U); BOOST_CHECK(!new_reader.empty()); // Reading after end of byte vector throws an error even if the reader is // not totally empty. BOOST_CHECK_THROW(new_reader >> d, std::ios_base::failure); } BOOST_AUTO_TEST_CASE(streams_vector_reader_rvalue) { std::vector data{0x82, 0xa7, 0x31}; SpanReader reader{data}; uint32_t varint = 0; // Deserialize into r-value reader >> VARINT(varint); BOOST_CHECK_EQUAL(varint, 54321U); BOOST_CHECK(reader.empty()); } BOOST_AUTO_TEST_CASE(bitstream_reader_writer) { DataStream data{}; BitStreamWriter bit_writer{data}; bit_writer.Write(0, 1); bit_writer.Write(2, 2); bit_writer.Write(6, 3); bit_writer.Write(11, 4); bit_writer.Write(1, 5); bit_writer.Write(32, 6); bit_writer.Write(7, 7); bit_writer.Write(30497, 16); bit_writer.Flush(); DataStream data_copy{data}; uint32_t serialized_int1; data >> serialized_int1; BOOST_CHECK_EQUAL(serialized_int1, uint32_t{0x7700C35A}); // NOTE: Serialized as LE uint16_t serialized_int2; data >> serialized_int2; BOOST_CHECK_EQUAL(serialized_int2, uint16_t{0x1072}); // NOTE: Serialized as LE BitStreamReader bit_reader{data_copy}; BOOST_CHECK_EQUAL(bit_reader.Read(1), 0U); BOOST_CHECK_EQUAL(bit_reader.Read(2), 2U); BOOST_CHECK_EQUAL(bit_reader.Read(3), 6U); BOOST_CHECK_EQUAL(bit_reader.Read(4), 11U); BOOST_CHECK_EQUAL(bit_reader.Read(5), 1U); BOOST_CHECK_EQUAL(bit_reader.Read(6), 32U); BOOST_CHECK_EQUAL(bit_reader.Read(7), 7U); BOOST_CHECK_EQUAL(bit_reader.Read(16), 30497U); BOOST_CHECK_THROW(bit_reader.Read(8), std::ios_base::failure); } BOOST_AUTO_TEST_CASE(streams_serializedata_xor) { // Degenerate case { DataStream ds{}; Obfuscation{}(ds); BOOST_CHECK_EQUAL(""s, ds.str()); } { const Obfuscation obfuscation{"ffffffffffffffff"_hex}; DataStream ds{"0ff0"_hex}; obfuscation(ds); BOOST_CHECK_EQUAL("\xf0\x0f"s, ds.str()); } { const Obfuscation obfuscation{"ff0fff0fff0fff0f"_hex}; DataStream ds{"f00f"_hex}; obfuscation(ds); BOOST_CHECK_EQUAL("\x0f\x00"s, ds.str()); } } BOOST_AUTO_TEST_CASE(streams_buffered_file) { fs::path streams_test_filename = m_args.GetDataDirBase() / "streams_test_tmp"; AutoFile file{fsbridge::fopen(streams_test_filename, "w+b")}; // The value at each offset is the offset. for (uint8_t j = 0; j < 40; ++j) { file << j; } file.seek(0, SEEK_SET); // The buffer size (second arg) must be greater than the rewind // amount (third arg). try { BufferedFile bfbad{file, 25, 25}; BOOST_CHECK(false); } catch (const std::exception& e) { BOOST_CHECK(strstr(e.what(), "Rewind limit must be less than buffer size") != nullptr); } // The buffer is 25 bytes, allow rewinding 10 bytes. BufferedFile bf{file, 25, 10}; BOOST_CHECK(!bf.eof()); uint8_t i; bf >> i; BOOST_CHECK_EQUAL(i, 0); bf >> i; BOOST_CHECK_EQUAL(i, 1); // After reading bytes 0 and 1, we're positioned at 2. BOOST_CHECK_EQUAL(bf.GetPos(), 2U); // Rewind to offset 0, ok (within the 10 byte window). BOOST_CHECK(bf.SetPos(0)); bf >> i; BOOST_CHECK_EQUAL(i, 0); // We can go forward to where we've been, but beyond may fail. BOOST_CHECK(bf.SetPos(2)); bf >> i; BOOST_CHECK_EQUAL(i, 2); // If you know the maximum number of bytes that should be // read to deserialize the variable, you can limit the read // extent. The current file offset is 3, so the following // SetLimit() allows zero bytes to be read. BOOST_CHECK(bf.SetLimit(3)); try { bf >> i; BOOST_CHECK(false); } catch (const std::exception& e) { BOOST_CHECK(strstr(e.what(), "Attempt to position past buffer limit") != nullptr); } // The default argument removes the limit completely. BOOST_CHECK(bf.SetLimit()); // The read position should still be at 3 (no change). BOOST_CHECK_EQUAL(bf.GetPos(), 3U); // Read from current offset, 3, forward until position 10. for (uint8_t j = 3; j < 10; ++j) { bf >> i; BOOST_CHECK_EQUAL(i, j); } BOOST_CHECK_EQUAL(bf.GetPos(), 10U); // We're guaranteed (just barely) to be able to rewind to zero. BOOST_CHECK(bf.SetPos(0)); BOOST_CHECK_EQUAL(bf.GetPos(), 0U); bf >> i; BOOST_CHECK_EQUAL(i, 0); // We can set the position forward again up to the farthest // into the stream we've been, but no farther. (Attempting // to go farther may succeed, but it's not guaranteed.) BOOST_CHECK(bf.SetPos(10)); bf >> i; BOOST_CHECK_EQUAL(i, 10); BOOST_CHECK_EQUAL(bf.GetPos(), 11U); // Now it's only guaranteed that we can rewind to offset 1 // (current read position, 11, minus rewind amount, 10). BOOST_CHECK(bf.SetPos(1)); BOOST_CHECK_EQUAL(bf.GetPos(), 1U); bf >> i; BOOST_CHECK_EQUAL(i, 1); // We can stream into large variables, even larger than // the buffer size. BOOST_CHECK(bf.SetPos(11)); { uint8_t a[40 - 11]; bf >> a; for (uint8_t j = 0; j < sizeof(a); ++j) { BOOST_CHECK_EQUAL(a[j], 11 + j); } } BOOST_CHECK_EQUAL(bf.GetPos(), 40U); // We've read the entire file, the next read should throw. try { bf >> i; BOOST_CHECK(false); } catch (const std::exception& e) { BOOST_CHECK(strstr(e.what(), "BufferedFile::Fill: end of file") != nullptr); } // Attempting to read beyond the end sets the EOF indicator. BOOST_CHECK(bf.eof()); // Still at offset 40, we can go back 10, to 30. BOOST_CHECK_EQUAL(bf.GetPos(), 40U); BOOST_CHECK(bf.SetPos(30)); bf >> i; BOOST_CHECK_EQUAL(i, 30); BOOST_CHECK_EQUAL(bf.GetPos(), 31U); // We're too far to rewind to position zero. BOOST_CHECK(!bf.SetPos(0)); // But we should now be positioned at least as far back as allowed // by the rewind window (relative to our farthest read position, 40). BOOST_CHECK(bf.GetPos() <= 30U); BOOST_REQUIRE_EQUAL(file.fclose(), 0); fs::remove(streams_test_filename); } BOOST_AUTO_TEST_CASE(streams_buffered_file_skip) { fs::path streams_test_filename = m_args.GetDataDirBase() / "streams_test_tmp"; AutoFile file{fsbridge::fopen(streams_test_filename, "w+b")}; // The value at each offset is the byte offset (e.g. byte 1 in the file has the value 0x01). for (uint8_t j = 0; j < 40; ++j) { file << j; } file.seek(0, SEEK_SET); // The buffer is 25 bytes, allow rewinding 10 bytes. BufferedFile bf{file, 25, 10}; uint8_t i; // This is like bf >> (7-byte-variable), in that it will cause data // to be read from the file into memory, but it's not copied to us. bf.SkipTo(7); BOOST_CHECK_EQUAL(bf.GetPos(), 7U); bf >> i; BOOST_CHECK_EQUAL(i, 7); // The bytes in the buffer up to offset 7 are valid and can be read. BOOST_CHECK(bf.SetPos(0)); bf >> i; BOOST_CHECK_EQUAL(i, 0); bf >> i; BOOST_CHECK_EQUAL(i, 1); bf.SkipTo(11); bf >> i; BOOST_CHECK_EQUAL(i, 11); // SkipTo() honors the transfer limit; we can't position beyond the limit. bf.SetLimit(13); try { bf.SkipTo(14); BOOST_CHECK(false); } catch (const std::exception& e) { BOOST_CHECK(strstr(e.what(), "Attempt to position past buffer limit") != nullptr); } // We can position exactly to the transfer limit. bf.SkipTo(13); BOOST_CHECK_EQUAL(bf.GetPos(), 13U); BOOST_REQUIRE_EQUAL(file.fclose(), 0); fs::remove(streams_test_filename); } BOOST_AUTO_TEST_CASE(streams_buffered_file_rand) { // Make this test deterministic. SeedRandomForTest(SeedRand::ZEROS); fs::path streams_test_filename = m_args.GetDataDirBase() / "streams_test_tmp"; for (int rep = 0; rep < 50; ++rep) { AutoFile file{fsbridge::fopen(streams_test_filename, "w+b")}; size_t fileSize = m_rng.randrange(256); for (uint8_t i = 0; i < fileSize; ++i) { file << i; } file.seek(0, SEEK_SET); size_t bufSize = m_rng.randrange(300) + 1; size_t rewindSize = m_rng.randrange(bufSize); BufferedFile bf{file, bufSize, rewindSize}; size_t currentPos = 0; size_t maxPos = 0; for (int step = 0; step < 100; ++step) { if (currentPos >= fileSize) break; // We haven't read to the end of the file yet. BOOST_CHECK(!bf.eof()); BOOST_CHECK_EQUAL(bf.GetPos(), currentPos); // Pretend the file consists of a series of objects of varying // sizes; the boundaries of the objects can interact arbitrarily // with the CBufferFile's internal buffer. These first three // cases simulate objects of various sizes (1, 2, 5 bytes). switch (m_rng.randrange(6)) { case 0: { uint8_t a[1]; if (currentPos + 1 > fileSize) continue; bf.SetLimit(currentPos + 1); bf >> a; for (uint8_t i = 0; i < 1; ++i) { BOOST_CHECK_EQUAL(a[i], currentPos); currentPos++; } break; } case 1: { uint8_t a[2]; if (currentPos + 2 > fileSize) continue; bf.SetLimit(currentPos + 2); bf >> a; for (uint8_t i = 0; i < 2; ++i) { BOOST_CHECK_EQUAL(a[i], currentPos); currentPos++; } break; } case 2: { uint8_t a[5]; if (currentPos + 5 > fileSize) continue; bf.SetLimit(currentPos + 5); bf >> a; for (uint8_t i = 0; i < 5; ++i) { BOOST_CHECK_EQUAL(a[i], currentPos); currentPos++; } break; } case 3: { // SkipTo is similar to the "read" cases above, except // we don't receive the data. size_t skip_length{static_cast(m_rng.randrange(5))}; if (currentPos + skip_length > fileSize) continue; bf.SetLimit(currentPos + skip_length); bf.SkipTo(currentPos + skip_length); currentPos += skip_length; break; } case 4: { // Find a byte value (that is at or ahead of the current position). size_t find = currentPos + m_rng.randrange(8); if (find >= fileSize) find = fileSize - 1; bf.FindByte(std::byte(find)); // The value at each offset is the offset. BOOST_CHECK_EQUAL(bf.GetPos(), find); currentPos = find; bf.SetLimit(currentPos + 1); uint8_t i; bf >> i; BOOST_CHECK_EQUAL(i, currentPos); currentPos++; break; } case 5: { size_t requestPos = m_rng.randrange(maxPos + 4); bool okay = bf.SetPos(requestPos); // The new position may differ from the requested position // because we may not be able to rewind beyond the rewind // window, and we may not be able to move forward beyond the // farthest position we've reached so far. currentPos = bf.GetPos(); BOOST_CHECK_EQUAL(okay, currentPos == requestPos); // Check that we can position within the rewind window. if (requestPos <= maxPos && maxPos > rewindSize && requestPos >= maxPos - rewindSize) { // We requested a position within the rewind window. BOOST_CHECK(okay); } break; } } if (maxPos < currentPos) maxPos = currentPos; } BOOST_REQUIRE_EQUAL(file.fclose(), 0); } fs::remove(streams_test_filename); } BOOST_AUTO_TEST_CASE(buffered_reader_matches_autofile_random_content) { const size_t file_size{1 + m_rng.randrange(1 << 17)}; const size_t buf_size{1 + m_rng.randrange(file_size)}; const FlatFilePos pos{0, 0}; const FlatFileSeq test_file{m_args.GetDataDirBase(), "buffered_file_test_random", node::BLOCKFILE_CHUNK_SIZE}; const Obfuscation obfuscation{m_rng.randbytes()}; // Write out the file with random content { AutoFile f{test_file.Open(pos, /*read_only=*/false), obfuscation}; f.write(m_rng.randbytes(file_size)); BOOST_REQUIRE_EQUAL(f.fclose(), 0); } BOOST_CHECK_EQUAL(fs::file_size(test_file.FileName(pos)), file_size); { AutoFile direct_file{test_file.Open(pos, /*read_only=*/true), obfuscation}; AutoFile buffered_file{test_file.Open(pos, /*read_only=*/true), obfuscation}; BufferedReader buffered_reader{std::move(buffered_file), buf_size}; for (size_t total_read{0}; total_read < file_size;) { const size_t read{Assert(std::min(1 + m_rng.randrange(m_rng.randbool() ? buf_size : 2 * buf_size), file_size - total_read))}; DataBuffer direct_file_buffer{read}; direct_file.read(direct_file_buffer); DataBuffer buffered_buffer{read}; buffered_reader.read(buffered_buffer); BOOST_CHECK_EQUAL_COLLECTIONS( direct_file_buffer.begin(), direct_file_buffer.end(), buffered_buffer.begin(), buffered_buffer.end() ); total_read += read; } { DataBuffer excess_byte{1}; BOOST_CHECK_EXCEPTION(direct_file.read(excess_byte), std::ios_base::failure, HasReason{"end of file"}); } { DataBuffer excess_byte{1}; BOOST_CHECK_EXCEPTION(buffered_reader.read(excess_byte), std::ios_base::failure, HasReason{"end of file"}); } } fs::remove(test_file.FileName(pos)); } BOOST_AUTO_TEST_CASE(buffered_writer_matches_autofile_random_content) { const size_t file_size{1 + m_rng.randrange(1 << 17)}; const size_t buf_size{1 + m_rng.randrange(file_size)}; const FlatFilePos pos{0, 0}; const FlatFileSeq test_buffered{m_args.GetDataDirBase(), "buffered_write_test", node::BLOCKFILE_CHUNK_SIZE}; const FlatFileSeq test_direct{m_args.GetDataDirBase(), "direct_write_test", node::BLOCKFILE_CHUNK_SIZE}; const Obfuscation obfuscation{m_rng.randbytes()}; { DataBuffer test_data{m_rng.randbytes(file_size)}; AutoFile direct_file{test_direct.Open(pos, /*read_only=*/false), obfuscation}; AutoFile buffered_file{test_buffered.Open(pos, /*read_only=*/false), obfuscation}; { BufferedWriter buffered{buffered_file, buf_size}; for (size_t total_written{0}; total_written < file_size;) { const size_t write_size{Assert(std::min(1 + m_rng.randrange(m_rng.randbool() ? buf_size : 2 * buf_size), file_size - total_written))}; auto current_span = std::span{test_data}.subspan(total_written, write_size); direct_file.write(current_span); buffered.write(current_span); total_written += write_size; } } BOOST_REQUIRE_EQUAL(buffered_file.fclose(), 0); BOOST_REQUIRE_EQUAL(direct_file.fclose(), 0); } // Compare the resulting files DataBuffer direct_result{file_size}; { AutoFile verify_direct{test_direct.Open(pos, /*read_only=*/true), obfuscation}; verify_direct.read(direct_result); DataBuffer excess_byte{1}; BOOST_CHECK_EXCEPTION(verify_direct.read(excess_byte), std::ios_base::failure, HasReason{"end of file"}); } DataBuffer buffered_result{file_size}; { AutoFile verify_buffered{test_buffered.Open(pos, /*read_only=*/true), obfuscation}; verify_buffered.read(buffered_result); DataBuffer excess_byte{1}; BOOST_CHECK_EXCEPTION(verify_buffered.read(excess_byte), std::ios_base::failure, HasReason{"end of file"}); } BOOST_CHECK_EQUAL_COLLECTIONS( direct_result.begin(), direct_result.end(), buffered_result.begin(), buffered_result.end() ); fs::remove(test_direct.FileName(pos)); fs::remove(test_buffered.FileName(pos)); } BOOST_AUTO_TEST_CASE(buffered_writer_reader) { const uint32_t v1{m_rng.rand32()}, v2{m_rng.rand32()}, v3{m_rng.rand32()}; const fs::path test_file{m_args.GetDataDirBase() / "test_buffered_write_read.bin"}; // Write out the values through a precisely sized BufferedWriter AutoFile file{fsbridge::fopen(test_file, "w+b")}; { BufferedWriter f(file, sizeof(v1) + sizeof(v2) + sizeof(v3)); f << v1 << v2; f.write(std::as_bytes(std::span{&v3, 1})); } BOOST_REQUIRE_EQUAL(file.fclose(), 0); // Read back and verify using BufferedReader { uint32_t _v1{0}, _v2{0}, _v3{0}; AutoFile file{fsbridge::fopen(test_file, "rb")}; BufferedReader f(std::move(file), sizeof(v1) + sizeof(v2) + sizeof(v3)); f >> _v1 >> _v2; f.read(std::as_writable_bytes(std::span{&_v3, 1})); BOOST_CHECK_EQUAL(_v1, v1); BOOST_CHECK_EQUAL(_v2, v2); BOOST_CHECK_EQUAL(_v3, v3); DataBuffer excess_byte{1}; BOOST_CHECK_EXCEPTION(f.read(excess_byte), std::ios_base::failure, HasReason{"end of file"}); } fs::remove(test_file); } BOOST_AUTO_TEST_CASE(streams_hashed) { DataStream stream{}; HashedSourceWriter hash_writer{stream}; const std::string data{"bitcoin"}; hash_writer << data; HashVerifier hash_verifier{stream}; std::string result; hash_verifier >> result; BOOST_CHECK_EQUAL(data, result); BOOST_CHECK_EQUAL(hash_writer.GetHash(), hash_verifier.GetHash()); } BOOST_AUTO_TEST_SUITE_END()