// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace node { int64_t GetMinimumTime(const CBlockIndex* pindexPrev, const int64_t difficulty_adjustment_interval) { int64_t min_time{pindexPrev->GetMedianTimePast() + 1}; // Height of block to be mined. const int height{pindexPrev->nHeight + 1}; // Account for BIP94 timewarp rule on all networks. This makes future // activation safer. if (height % difficulty_adjustment_interval == 0) { min_time = std::max(min_time, pindexPrev->GetBlockTime() - MAX_TIMEWARP); } return min_time; } int64_t UpdateTime(CBlockHeader* pblock, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev) { int64_t nOldTime = pblock->nTime; int64_t nNewTime{std::max(GetMinimumTime(pindexPrev, consensusParams.DifficultyAdjustmentInterval()), TicksSinceEpoch(NodeClock::now()))}; if (nOldTime < nNewTime) { pblock->nTime = nNewTime; } // Updating time can change work required on testnet: if (consensusParams.fPowAllowMinDifficultyBlocks) { pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, consensusParams); } return nNewTime - nOldTime; } void RegenerateCommitments(CBlock& block, ChainstateManager& chainman) { CMutableTransaction tx{*block.vtx.at(0)}; tx.vout.erase(tx.vout.begin() + GetWitnessCommitmentIndex(block)); block.vtx.at(0) = MakeTransactionRef(tx); const CBlockIndex* prev_block = WITH_LOCK(::cs_main, return chainman.m_blockman.LookupBlockIndex(block.hashPrevBlock)); chainman.GenerateCoinbaseCommitment(block, prev_block); block.hashMerkleRoot = BlockMerkleRoot(block); } static BlockAssembler::Options ClampOptions(BlockAssembler::Options options) { Assert(options.block_reserved_weight <= MAX_BLOCK_WEIGHT); Assert(options.block_reserved_weight >= MINIMUM_BLOCK_RESERVED_WEIGHT); Assert(options.coinbase_output_max_additional_sigops <= MAX_BLOCK_SIGOPS_COST); // Limit weight to between block_reserved_weight and MAX_BLOCK_WEIGHT for sanity: // block_reserved_weight can safely exceed -blockmaxweight, but the rest of the block template will be empty. options.nBlockMaxWeight = std::clamp(options.nBlockMaxWeight, options.block_reserved_weight, MAX_BLOCK_WEIGHT); return options; } BlockAssembler::BlockAssembler(Chainstate& chainstate, const CTxMemPool* mempool, const Options& options) : chainparams{chainstate.m_chainman.GetParams()}, m_mempool{options.use_mempool ? mempool : nullptr}, m_chainstate{chainstate}, m_options{ClampOptions(options)} { } void ApplyArgsManOptions(const ArgsManager& args, BlockAssembler::Options& options) { // Block resource limits options.nBlockMaxWeight = args.GetIntArg("-blockmaxweight", options.nBlockMaxWeight); if (const auto blockmintxfee{args.GetArg("-blockmintxfee")}) { if (const auto parsed{ParseMoney(*blockmintxfee)}) options.blockMinFeeRate = CFeeRate{*parsed}; } options.print_modified_fee = args.GetBoolArg("-printpriority", options.print_modified_fee); options.block_reserved_weight = args.GetIntArg("-blockreservedweight", options.block_reserved_weight); } void BlockAssembler::resetBlock() { inBlock.clear(); // Reserve space for fixed-size block header, txs count, and coinbase tx. nBlockWeight = m_options.block_reserved_weight; nBlockSigOpsCost = m_options.coinbase_output_max_additional_sigops; // These counters do not include coinbase tx nBlockTx = 0; nFees = 0; } std::unique_ptr BlockAssembler::CreateNewBlock() { const auto time_start{SteadyClock::now()}; resetBlock(); pblocktemplate.reset(new CBlockTemplate()); CBlock* const pblock = &pblocktemplate->block; // pointer for convenience // Add dummy coinbase tx as first transaction. It is skipped by the // getblocktemplate RPC and mining interface consumers must not use it. pblock->vtx.emplace_back(); LOCK(::cs_main); CBlockIndex* pindexPrev = m_chainstate.m_chain.Tip(); assert(pindexPrev != nullptr); nHeight = pindexPrev->nHeight + 1; pblock->nVersion = m_chainstate.m_chainman.m_versionbitscache.ComputeBlockVersion(pindexPrev, chainparams.GetConsensus()); // -regtest only: allow overriding block.nVersion with // -blockversion=N to test forking scenarios if (chainparams.MineBlocksOnDemand()) { pblock->nVersion = gArgs.GetIntArg("-blockversion", pblock->nVersion); } pblock->nTime = TicksSinceEpoch(NodeClock::now()); m_lock_time_cutoff = pindexPrev->GetMedianTimePast(); int nPackagesSelected = 0; int nDescendantsUpdated = 0; if (m_mempool) { addPackageTxs(nPackagesSelected, nDescendantsUpdated); } const auto time_1{SteadyClock::now()}; m_last_block_num_txs = nBlockTx; m_last_block_weight = nBlockWeight; // Create coinbase transaction. CMutableTransaction coinbaseTx; coinbaseTx.vin.resize(1); coinbaseTx.vin[0].prevout.SetNull(); coinbaseTx.vin[0].nSequence = CTxIn::MAX_SEQUENCE_NONFINAL; // Make sure timelock is enforced. coinbaseTx.vout.resize(1); coinbaseTx.vout[0].scriptPubKey = m_options.coinbase_output_script; coinbaseTx.vout[0].nValue = nFees + GetBlockSubsidy(nHeight, chainparams.GetConsensus()); coinbaseTx.vin[0].scriptSig = CScript() << nHeight << OP_0; Assert(nHeight > 0); coinbaseTx.nLockTime = static_cast(nHeight - 1); pblock->vtx[0] = MakeTransactionRef(std::move(coinbaseTx)); pblocktemplate->vchCoinbaseCommitment = m_chainstate.m_chainman.GenerateCoinbaseCommitment(*pblock, pindexPrev); LogPrintf("CreateNewBlock(): block weight: %u txs: %u fees: %ld sigops %d\n", GetBlockWeight(*pblock), nBlockTx, nFees, nBlockSigOpsCost); // Fill in header pblock->hashPrevBlock = pindexPrev->GetBlockHash(); UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev); pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, chainparams.GetConsensus()); pblock->nNonce = 0; if (m_options.test_block_validity) { if (BlockValidationState state{TestBlockValidity(m_chainstate, *pblock, /*check_pow=*/false, /*check_merkle_root=*/false)}; !state.IsValid()) { throw std::runtime_error(strprintf("TestBlockValidity failed: %s", state.ToString())); } } const auto time_2{SteadyClock::now()}; LogDebug(BCLog::BENCH, "CreateNewBlock() packages: %.2fms (%d packages, %d updated descendants), validity: %.2fms (total %.2fms)\n", Ticks(time_1 - time_start), nPackagesSelected, nDescendantsUpdated, Ticks(time_2 - time_1), Ticks(time_2 - time_start)); return std::move(pblocktemplate); } void BlockAssembler::onlyUnconfirmed(CTxMemPool::setEntries& testSet) { for (CTxMemPool::setEntries::iterator iit = testSet.begin(); iit != testSet.end(); ) { // Only test txs not already in the block if (inBlock.count((*iit)->GetSharedTx()->GetHash())) { testSet.erase(iit++); } else { iit++; } } } bool BlockAssembler::TestPackage(uint64_t packageSize, int64_t packageSigOpsCost) const { // TODO: switch to weight-based accounting for packages instead of vsize-based accounting. if (nBlockWeight + WITNESS_SCALE_FACTOR * packageSize >= m_options.nBlockMaxWeight) { return false; } if (nBlockSigOpsCost + packageSigOpsCost >= MAX_BLOCK_SIGOPS_COST) { return false; } return true; } // Perform transaction-level checks before adding to block: // - transaction finality (locktime) bool BlockAssembler::TestPackageTransactions(const CTxMemPool::setEntries& package) const { for (CTxMemPool::txiter it : package) { if (!IsFinalTx(it->GetTx(), nHeight, m_lock_time_cutoff)) { return false; } } return true; } void BlockAssembler::AddToBlock(CTxMemPool::txiter iter) { pblocktemplate->block.vtx.emplace_back(iter->GetSharedTx()); pblocktemplate->vTxFees.push_back(iter->GetFee()); pblocktemplate->vTxSigOpsCost.push_back(iter->GetSigOpCost()); nBlockWeight += iter->GetTxWeight(); ++nBlockTx; nBlockSigOpsCost += iter->GetSigOpCost(); nFees += iter->GetFee(); inBlock.insert(iter->GetSharedTx()->GetHash()); if (m_options.print_modified_fee) { LogPrintf("fee rate %s txid %s\n", CFeeRate(iter->GetModifiedFee(), iter->GetTxSize()).ToString(), iter->GetTx().GetHash().ToString()); } } /** Add descendants of given transactions to mapModifiedTx with ancestor * state updated assuming given transactions are inBlock. Returns number * of updated descendants. */ static int UpdatePackagesForAdded(const CTxMemPool& mempool, const CTxMemPool::setEntries& alreadyAdded, indexed_modified_transaction_set& mapModifiedTx) EXCLUSIVE_LOCKS_REQUIRED(mempool.cs) { AssertLockHeld(mempool.cs); int nDescendantsUpdated = 0; for (CTxMemPool::txiter it : alreadyAdded) { CTxMemPool::setEntries descendants; mempool.CalculateDescendants(it, descendants); // Insert all descendants (not yet in block) into the modified set for (CTxMemPool::txiter desc : descendants) { if (alreadyAdded.count(desc)) { continue; } ++nDescendantsUpdated; modtxiter mit = mapModifiedTx.find(desc); if (mit == mapModifiedTx.end()) { CTxMemPoolModifiedEntry modEntry(desc); mit = mapModifiedTx.insert(modEntry).first; } mapModifiedTx.modify(mit, update_for_parent_inclusion(it)); } } return nDescendantsUpdated; } void BlockAssembler::SortForBlock(const CTxMemPool::setEntries& package, std::vector& sortedEntries) { // Sort package by ancestor count // If a transaction A depends on transaction B, then A's ancestor count // must be greater than B's. So this is sufficient to validly order the // transactions for block inclusion. sortedEntries.clear(); sortedEntries.insert(sortedEntries.begin(), package.begin(), package.end()); std::sort(sortedEntries.begin(), sortedEntries.end(), CompareTxIterByAncestorCount()); } // This transaction selection algorithm orders the mempool based // on feerate of a transaction including all unconfirmed ancestors. // Since we don't remove transactions from the mempool as we select them // for block inclusion, we need an alternate method of updating the feerate // of a transaction with its not-yet-selected ancestors as we go. // This is accomplished by walking the in-mempool descendants of selected // transactions and storing a temporary modified state in mapModifiedTxs. // Each time through the loop, we compare the best transaction in // mapModifiedTxs with the next transaction in the mempool to decide what // transaction package to work on next. void BlockAssembler::addPackageTxs(int& nPackagesSelected, int& nDescendantsUpdated) { const auto& mempool{*Assert(m_mempool)}; LOCK(mempool.cs); // mapModifiedTx will store sorted packages after they are modified // because some of their txs are already in the block indexed_modified_transaction_set mapModifiedTx; // Keep track of entries that failed inclusion, to avoid duplicate work std::set failedTx; CTxMemPool::indexed_transaction_set::index::type::iterator mi = mempool.mapTx.get().begin(); CTxMemPool::txiter iter; // Limit the number of attempts to add transactions to the block when it is // close to full; this is just a simple heuristic to finish quickly if the // mempool has a lot of entries. const int64_t MAX_CONSECUTIVE_FAILURES = 1000; constexpr int32_t BLOCK_FULL_ENOUGH_WEIGHT_DELTA = 4000; int64_t nConsecutiveFailed = 0; while (mi != mempool.mapTx.get().end() || !mapModifiedTx.empty()) { // First try to find a new transaction in mapTx to evaluate. // // Skip entries in mapTx that are already in a block or are present // in mapModifiedTx (which implies that the mapTx ancestor state is // stale due to ancestor inclusion in the block) // Also skip transactions that we've already failed to add. This can happen if // we consider a transaction in mapModifiedTx and it fails: we can then // potentially consider it again while walking mapTx. It's currently // guaranteed to fail again, but as a belt-and-suspenders check we put it in // failedTx and avoid re-evaluation, since the re-evaluation would be using // cached size/sigops/fee values that are not actually correct. /** Return true if given transaction from mapTx has already been evaluated, * or if the transaction's cached data in mapTx is incorrect. */ if (mi != mempool.mapTx.get().end()) { auto it = mempool.mapTx.project<0>(mi); assert(it != mempool.mapTx.end()); if (mapModifiedTx.count(it) || inBlock.count(it->GetSharedTx()->GetHash()) || failedTx.count(it->GetSharedTx()->GetHash())) { ++mi; continue; } } // Now that mi is not stale, determine which transaction to evaluate: // the next entry from mapTx, or the best from mapModifiedTx? bool fUsingModified = false; modtxscoreiter modit = mapModifiedTx.get().begin(); if (mi == mempool.mapTx.get().end()) { // We're out of entries in mapTx; use the entry from mapModifiedTx iter = modit->iter; fUsingModified = true; } else { // Try to compare the mapTx entry to the mapModifiedTx entry iter = mempool.mapTx.project<0>(mi); if (modit != mapModifiedTx.get().end() && CompareTxMemPoolEntryByAncestorFee()(*modit, CTxMemPoolModifiedEntry(iter))) { // The best entry in mapModifiedTx has higher score // than the one from mapTx. // Switch which transaction (package) to consider iter = modit->iter; fUsingModified = true; } else { // Either no entry in mapModifiedTx, or it's worse than mapTx. // Increment mi for the next loop iteration. ++mi; } } // We skip mapTx entries that are inBlock, and mapModifiedTx shouldn't // contain anything that is inBlock. assert(!inBlock.count(iter->GetSharedTx()->GetHash())); uint64_t packageSize = iter->GetSizeWithAncestors(); CAmount packageFees = iter->GetModFeesWithAncestors(); int64_t packageSigOpsCost = iter->GetSigOpCostWithAncestors(); if (fUsingModified) { packageSize = modit->nSizeWithAncestors; packageFees = modit->nModFeesWithAncestors; packageSigOpsCost = modit->nSigOpCostWithAncestors; } if (packageFees < m_options.blockMinFeeRate.GetFee(packageSize)) { // Everything else we might consider has a lower fee rate return; } if (!TestPackage(packageSize, packageSigOpsCost)) { if (fUsingModified) { // Since we always look at the best entry in mapModifiedTx, // we must erase failed entries so that we can consider the // next best entry on the next loop iteration mapModifiedTx.get().erase(modit); failedTx.insert(iter->GetSharedTx()->GetHash()); } ++nConsecutiveFailed; if (nConsecutiveFailed > MAX_CONSECUTIVE_FAILURES && nBlockWeight > m_options.nBlockMaxWeight - BLOCK_FULL_ENOUGH_WEIGHT_DELTA) { // Give up if we're close to full and haven't succeeded in a while break; } continue; } auto ancestors{mempool.AssumeCalculateMemPoolAncestors(__func__, *iter, CTxMemPool::Limits::NoLimits(), /*fSearchForParents=*/false)}; onlyUnconfirmed(ancestors); ancestors.insert(iter); // Test if all tx's are Final if (!TestPackageTransactions(ancestors)) { if (fUsingModified) { mapModifiedTx.get().erase(modit); failedTx.insert(iter->GetSharedTx()->GetHash()); } continue; } // This transaction will make it in; reset the failed counter. nConsecutiveFailed = 0; // Package can be added. Sort the entries in a valid order. std::vector sortedEntries; SortForBlock(ancestors, sortedEntries); for (size_t i = 0; i < sortedEntries.size(); ++i) { AddToBlock(sortedEntries[i]); // Erase from the modified set, if present mapModifiedTx.erase(sortedEntries[i]); } ++nPackagesSelected; pblocktemplate->m_package_feerates.emplace_back(packageFees, static_cast(packageSize)); // Update transactions that depend on each of these nDescendantsUpdated += UpdatePackagesForAdded(mempool, ancestors, mapModifiedTx); } } void AddMerkleRootAndCoinbase(CBlock& block, CTransactionRef coinbase, uint32_t version, uint32_t timestamp, uint32_t nonce) { if (block.vtx.size() == 0) { block.vtx.emplace_back(coinbase); } else { block.vtx[0] = coinbase; } block.nVersion = version; block.nTime = timestamp; block.nNonce = nonce; block.hashMerkleRoot = BlockMerkleRoot(block); } std::unique_ptr WaitAndCreateNewBlock(ChainstateManager& chainman, KernelNotifications& kernel_notifications, CTxMemPool* mempool, const std::unique_ptr& block_template, const BlockWaitOptions& options, const BlockAssembler::Options& assemble_options) { // Delay calculating the current template fees, just in case a new block // comes in before the next tick. CAmount current_fees = -1; // Alternate waiting for a new tip and checking if fees have risen. // The latter check is expensive so we only run it once per second. auto now{NodeClock::now()}; const auto deadline = now + options.timeout; const MillisecondsDouble tick{1000}; const bool allow_min_difficulty{chainman.GetParams().GetConsensus().fPowAllowMinDifficultyBlocks}; do { bool tip_changed{false}; { WAIT_LOCK(kernel_notifications.m_tip_block_mutex, lock); // Note that wait_until() checks the predicate before waiting kernel_notifications.m_tip_block_cv.wait_until(lock, std::min(now + tick, deadline), [&]() EXCLUSIVE_LOCKS_REQUIRED(kernel_notifications.m_tip_block_mutex) { AssertLockHeld(kernel_notifications.m_tip_block_mutex); const auto tip_block{kernel_notifications.TipBlock()}; // We assume tip_block is set, because this is an instance // method on BlockTemplate and no template could have been // generated before a tip exists. tip_changed = Assume(tip_block) && tip_block != block_template->block.hashPrevBlock; return tip_changed || chainman.m_interrupt; }); } if (chainman.m_interrupt) return nullptr; // At this point the tip changed, a full tick went by or we reached // the deadline. // Must release m_tip_block_mutex before locking cs_main, to avoid deadlocks. LOCK(::cs_main); // On test networks return a minimum difficulty block after 20 minutes if (!tip_changed && allow_min_difficulty) { const NodeClock::time_point tip_time{std::chrono::seconds{chainman.ActiveChain().Tip()->GetBlockTime()}}; if (now > tip_time + 20min) { tip_changed = true; } } /** * We determine if fees increased compared to the previous template by generating * a fresh template. There may be more efficient ways to determine how much * (approximate) fees for the next block increased, perhaps more so after * Cluster Mempool. * * We'll also create a new template if the tip changed during this iteration. */ if (options.fee_threshold < MAX_MONEY || tip_changed) { auto new_tmpl{BlockAssembler{ chainman.ActiveChainstate(), mempool, assemble_options} .CreateNewBlock()}; // If the tip changed, return the new template regardless of its fees. if (tip_changed) return new_tmpl; // Calculate the original template total fees if we haven't already if (current_fees == -1) { current_fees = 0; for (CAmount fee : block_template->vTxFees) { current_fees += fee; } } CAmount new_fees = 0; for (CAmount fee : new_tmpl->vTxFees) { new_fees += fee; Assume(options.fee_threshold != MAX_MONEY); if (new_fees >= current_fees + options.fee_threshold) return new_tmpl; } } now = NodeClock::now(); } while (now < deadline); return nullptr; } std::optional GetTip(ChainstateManager& chainman) { LOCK(::cs_main); CBlockIndex* tip{chainman.ActiveChain().Tip()}; if (!tip) return {}; return BlockRef{tip->GetBlockHash(), tip->nHeight}; } std::optional WaitTipChanged(ChainstateManager& chainman, KernelNotifications& kernel_notifications, const uint256& current_tip, MillisecondsDouble& timeout) { Assume(timeout >= 0ms); // No internal callers should use a negative timeout if (timeout < 0ms) timeout = 0ms; if (timeout > std::chrono::years{100}) timeout = std::chrono::years{100}; // Upper bound to avoid UB in std::chrono auto deadline{std::chrono::steady_clock::now() + timeout}; { WAIT_LOCK(kernel_notifications.m_tip_block_mutex, lock); // For callers convenience, wait longer than the provided timeout // during startup for the tip to be non-null. That way this function // always returns valid tip information when possible and only // returns null when shutting down, not when timing out. kernel_notifications.m_tip_block_cv.wait(lock, [&]() EXCLUSIVE_LOCKS_REQUIRED(kernel_notifications.m_tip_block_mutex) { return kernel_notifications.TipBlock() || chainman.m_interrupt; }); if (chainman.m_interrupt) return {}; // At this point TipBlock is set, so continue to wait until it is // different then `current_tip` provided by caller. kernel_notifications.m_tip_block_cv.wait_until(lock, deadline, [&]() EXCLUSIVE_LOCKS_REQUIRED(kernel_notifications.m_tip_block_mutex) { return Assume(kernel_notifications.TipBlock()) != current_tip || chainman.m_interrupt; }); } if (chainman.m_interrupt) return {}; // Must release m_tip_block_mutex before getTip() locks cs_main, to // avoid deadlocks. return GetTip(chainman); } } // namespace node