// Copyright (c) 2024 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or https://www.opensource.org/licenses/mit-license.php. #include // IWYU pragma: keep #include #include #include #include #include #include #if defined(__linux__) #include #elif defined(__FreeBSD__) #include #if __FreeBSD_version >= 1400000 // Workaround https://github.com/freebsd/freebsd-src/pull/1070. #define typeof __typeof #include #include #endif #elif defined(WIN32) #include #elif defined(__APPLE__) #include #include #endif #ifdef HAVE_IFADDRS #include #include #endif namespace { //! Return CNetAddr for the specified OS-level network address. //! If a length is not given, it is taken to be sizeof(struct sockaddr_*) for the family. std::optional FromSockAddr(const struct sockaddr* addr, std::optional sa_len_opt) { socklen_t sa_len = 0; if (sa_len_opt.has_value()) { sa_len = *sa_len_opt; } else { // If sockaddr length was not specified, determine it from the family. switch (addr->sa_family) { case AF_INET: sa_len = sizeof(struct sockaddr_in); break; case AF_INET6: sa_len = sizeof(struct sockaddr_in6); break; default: return std::nullopt; } } // Fill in a CService from the sockaddr, then drop the port part. CService service; if (service.SetSockAddr(addr, sa_len)) { return (CNetAddr)service; } return std::nullopt; } // Linux and FreeBSD 14.0+. For FreeBSD 13.2 the code can be compiled but // running it requires loading a special kernel module, otherwise socket(AF_NETLINK,...) // will fail, so we skip that. #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 1400000) std::optional QueryDefaultGatewayImpl(sa_family_t family) { // Create a netlink socket. auto sock{CreateSock(AF_NETLINK, SOCK_DGRAM, NETLINK_ROUTE)}; if (!sock) { LogPrintLevel(BCLog::NET, BCLog::Level::Error, "socket(AF_NETLINK): %s\n", NetworkErrorString(errno)); return std::nullopt; } // Send request. struct { nlmsghdr hdr; ///< Request header. rtmsg data; ///< Request data, a "route message". nlattr dst_hdr; ///< One attribute, conveying the route destination address. char dst_data[16]; ///< Route destination address. To query the default route we use 0.0.0.0/0 or [::]/0. For IPv4 the first 4 bytes are used. } request{}; // Whether to use the first 4 or 16 bytes from request.dst_data. const size_t dst_data_len = family == AF_INET ? 4 : 16; request.hdr.nlmsg_type = RTM_GETROUTE; request.hdr.nlmsg_flags = NLM_F_REQUEST; #ifdef __linux__ // Linux IPv4 / IPv6 - this must be present, otherwise no gateway is found // FreeBSD IPv4 - does not matter, the gateway is found with or without this // FreeBSD IPv6 - this must be absent, otherwise no gateway is found request.hdr.nlmsg_flags |= NLM_F_DUMP; #endif request.hdr.nlmsg_len = NLMSG_LENGTH(sizeof(rtmsg) + sizeof(nlattr) + dst_data_len); request.hdr.nlmsg_seq = 0; // Sequence number, used to match which reply is to which request. Irrelevant for us because we send just one request. request.data.rtm_family = family; request.data.rtm_dst_len = 0; // Prefix length. #ifdef __FreeBSD__ // Linux IPv4 / IPv6 this must be absent, otherwise no gateway is found // FreeBSD IPv4 - does not matter, the gateway is found with or without this // FreeBSD IPv6 - this must be present, otherwise no gateway is found request.data.rtm_flags = RTM_F_PREFIX; #endif request.dst_hdr.nla_type = RTA_DST; request.dst_hdr.nla_len = sizeof(nlattr) + dst_data_len; if (sock->Send(&request, request.hdr.nlmsg_len, 0) != static_cast(request.hdr.nlmsg_len)) { LogPrintLevel(BCLog::NET, BCLog::Level::Error, "send() to netlink socket: %s\n", NetworkErrorString(errno)); return std::nullopt; } // Receive response. char response[4096]; int64_t recv_result; do { recv_result = sock->Recv(response, sizeof(response), 0); } while (recv_result < 0 && (errno == EINTR || errno == EAGAIN)); if (recv_result < 0) { LogPrintLevel(BCLog::NET, BCLog::Level::Error, "recv() from netlink socket: %s\n", NetworkErrorString(errno)); return std::nullopt; } for (nlmsghdr* hdr = (nlmsghdr*)response; NLMSG_OK(hdr, recv_result); hdr = NLMSG_NEXT(hdr, recv_result)) { rtmsg* r = (rtmsg*)NLMSG_DATA(hdr); int remaining_len = RTM_PAYLOAD(hdr); // Iterate over the attributes. rtattr *rta_gateway = nullptr; int scope_id = 0; for (rtattr* attr = RTM_RTA(r); RTA_OK(attr, remaining_len); attr = RTA_NEXT(attr, remaining_len)) { if (attr->rta_type == RTA_GATEWAY) { rta_gateway = attr; } else if (attr->rta_type == RTA_OIF && sizeof(int) == RTA_PAYLOAD(attr)) { std::memcpy(&scope_id, RTA_DATA(attr), sizeof(scope_id)); } } // Found gateway? if (rta_gateway != nullptr) { if (family == AF_INET && sizeof(in_addr) == RTA_PAYLOAD(rta_gateway)) { in_addr gw; std::memcpy(&gw, RTA_DATA(rta_gateway), sizeof(gw)); return CNetAddr(gw); } else if (family == AF_INET6 && sizeof(in6_addr) == RTA_PAYLOAD(rta_gateway)) { in6_addr gw; std::memcpy(&gw, RTA_DATA(rta_gateway), sizeof(gw)); return CNetAddr(gw, scope_id); } } } return std::nullopt; } #elif defined(WIN32) std::optional QueryDefaultGatewayImpl(sa_family_t family) { NET_LUID interface_luid = {}; SOCKADDR_INET destination_address = {}; MIB_IPFORWARD_ROW2 best_route = {}; SOCKADDR_INET best_source_address = {}; DWORD best_if_idx = 0; DWORD status = 0; // Pass empty destination address of the requested type (:: or 0.0.0.0) to get interface of default route. destination_address.si_family = family; status = GetBestInterfaceEx((sockaddr*)&destination_address, &best_if_idx); if (status != NO_ERROR) { LogPrintLevel(BCLog::NET, BCLog::Level::Error, "Could not get best interface for default route: %s\n", NetworkErrorString(status)); return std::nullopt; } // Get best route to default gateway. // Leave interface_luid at all-zeros to use interface index instead. status = GetBestRoute2(&interface_luid, best_if_idx, nullptr, &destination_address, 0, &best_route, &best_source_address); if (status != NO_ERROR) { LogPrintLevel(BCLog::NET, BCLog::Level::Error, "Could not get best route for default route for interface index %d: %s\n", best_if_idx, NetworkErrorString(status)); return std::nullopt; } Assume(best_route.NextHop.si_family == family); if (family == AF_INET) { return CNetAddr(best_route.NextHop.Ipv4.sin_addr); } else if(family == AF_INET6) { return CNetAddr(best_route.NextHop.Ipv6.sin6_addr, best_route.InterfaceIndex); } return std::nullopt; } #elif defined(__APPLE__) #define ROUNDUP32(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof(uint32_t) - 1))) : sizeof(uint32_t)) //! MacOS: Get default gateway from route table. See route(4) for the format. std::optional QueryDefaultGatewayImpl(sa_family_t family) { // net.route.0.inet[6].flags.gateway int mib[] = {CTL_NET, PF_ROUTE, 0, family, NET_RT_FLAGS, RTF_GATEWAY}; // The size of the available data is determined by calling sysctl() with oldp=nullptr. See sysctl(3). size_t l = 0; if (sysctl(/*name=*/mib, /*namelen=*/sizeof(mib) / sizeof(int), /*oldp=*/nullptr, /*oldlenp=*/&l, /*newp=*/nullptr, /*newlen=*/0) < 0) { LogPrintLevel(BCLog::NET, BCLog::Level::Error, "Could not get sysctl length of routing table: %s\n", SysErrorString(errno)); return std::nullopt; } std::vector buf(l); if (sysctl(/*name=*/mib, /*namelen=*/sizeof(mib) / sizeof(int), /*oldp=*/buf.data(), /*oldlenp=*/&l, /*newp=*/nullptr, /*newlen=*/0) < 0) { LogPrintLevel(BCLog::NET, BCLog::Level::Error, "Could not get sysctl data of routing table: %s\n", SysErrorString(errno)); return std::nullopt; } // Iterate over messages (each message is a routing table entry). for (size_t msg_pos = 0; msg_pos < buf.size(); ) { if ((msg_pos + sizeof(rt_msghdr)) > buf.size()) return std::nullopt; const struct rt_msghdr* rt = (const struct rt_msghdr*)(buf.data() + msg_pos); const size_t next_msg_pos = msg_pos + rt->rtm_msglen; if (rt->rtm_msglen < sizeof(rt_msghdr) || next_msg_pos > buf.size()) return std::nullopt; // Iterate over addresses within message, get destination and gateway (if present). // Address data starts after header. size_t sa_pos = msg_pos + sizeof(struct rt_msghdr); std::optional dst, gateway; for (int i = 0; i < RTAX_MAX; i++) { if (rt->rtm_addrs & (1 << i)) { // 2 is just sa_len + sa_family, the theoretical minimum size of a socket address. if ((sa_pos + 2) > next_msg_pos) return std::nullopt; const struct sockaddr* sa = (const struct sockaddr*)(buf.data() + sa_pos); if ((sa_pos + sa->sa_len) > next_msg_pos) return std::nullopt; if (i == RTAX_DST) { dst = FromSockAddr(sa, sa->sa_len); } else if (i == RTAX_GATEWAY) { gateway = FromSockAddr(sa, sa->sa_len); } // Skip sockaddr entries for bit flags we're not interested in, // move cursor. sa_pos += ROUNDUP32(sa->sa_len); } } // Found default gateway? if (dst && gateway && dst->IsBindAny()) { // Route to 0.0.0.0 or :: ? return *gateway; } // Skip to next message. msg_pos = next_msg_pos; } return std::nullopt; } #else // Dummy implementation. std::optional QueryDefaultGatewayImpl(sa_family_t) { return std::nullopt; } #endif } std::optional QueryDefaultGateway(Network network) { Assume(network == NET_IPV4 || network == NET_IPV6); sa_family_t family; if (network == NET_IPV4) { family = AF_INET; } else if(network == NET_IPV6) { family = AF_INET6; } else { return std::nullopt; } std::optional ret = QueryDefaultGatewayImpl(family); // It's possible for the default gateway to be 0.0.0.0 or ::0 on at least Windows // for some routing strategies. If so, return as if no default gateway was found. if (ret && !ret->IsBindAny()) { return ret; } else { return std::nullopt; } } std::vector GetLocalAddresses() { std::vector addresses; #ifdef WIN32 DWORD status = 0; constexpr size_t MAX_ADAPTER_ADDR_SIZE = 4 * 1000 * 1000; // Absolute maximum size of adapter addresses structure we're willing to handle, as a precaution. std::vector out_buf(15000, {}); // Start with 15KB allocation as recommended in GetAdaptersAddresses documentation. while (true) { ULONG out_buf_len = out_buf.size(); status = GetAdaptersAddresses(AF_UNSPEC, GAA_FLAG_SKIP_ANYCAST | GAA_FLAG_SKIP_MULTICAST | GAA_FLAG_SKIP_DNS_SERVER | GAA_FLAG_SKIP_FRIENDLY_NAME, nullptr, reinterpret_cast(out_buf.data()), &out_buf_len); if (status == ERROR_BUFFER_OVERFLOW && out_buf.size() < MAX_ADAPTER_ADDR_SIZE) { // If status == ERROR_BUFFER_OVERFLOW, out_buf_len will contain the needed size. // Unfortunately, this cannot be fully relied on, because another process may have added interfaces. // So to avoid getting stuck due to a race condition, double the buffer size at least // once before retrying (but only up to the maximum allowed size). out_buf.resize(std::min(std::max(out_buf_len, out_buf.size()) * 2, MAX_ADAPTER_ADDR_SIZE)); } else { break; } } if (status != NO_ERROR) { // This includes ERROR_NO_DATA if there are no addresses and thus there's not even one PIP_ADAPTER_ADDRESSES // record in the returned structure. LogPrintLevel(BCLog::NET, BCLog::Level::Error, "Could not get local adapter addresses: %s\n", NetworkErrorString(status)); return addresses; } // Iterate over network adapters. for (PIP_ADAPTER_ADDRESSES cur_adapter = reinterpret_cast(out_buf.data()); cur_adapter != nullptr; cur_adapter = cur_adapter->Next) { if (cur_adapter->OperStatus != IfOperStatusUp) continue; if (cur_adapter->IfType == IF_TYPE_SOFTWARE_LOOPBACK) continue; // Iterate over unicast addresses for adapter, the only address type we're interested in. for (PIP_ADAPTER_UNICAST_ADDRESS cur_address = cur_adapter->FirstUnicastAddress; cur_address != nullptr; cur_address = cur_address->Next) { // "The IP address is a cluster address and should not be used by most applications." if ((cur_address->Flags & IP_ADAPTER_ADDRESS_TRANSIENT) != 0) continue; if (std::optional addr = FromSockAddr(cur_address->Address.lpSockaddr, static_cast(cur_address->Address.iSockaddrLength))) { addresses.push_back(*addr); } } } #elif defined(HAVE_IFADDRS) struct ifaddrs* myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next) { if (ifa->ifa_addr == nullptr) continue; if ((ifa->ifa_flags & IFF_UP) == 0) continue; if ((ifa->ifa_flags & IFF_LOOPBACK) != 0) continue; if (std::optional addr = FromSockAddr(ifa->ifa_addr, std::nullopt)) { addresses.push_back(*addr); } } freeifaddrs(myaddrs); } #endif return addresses; }