from typing import TYPE_CHECKING from langchain.schema.messages import AIMessage from langchain.schema.messages import BaseMessage from langchain.schema.messages import HumanMessage from langchain.schema.messages import SystemMessage from pydantic import BaseModel from onyx.configs.constants import MessageType from onyx.file_store.models import InMemoryChatFile from onyx.llm.utils import build_content_with_imgs from onyx.tools.models import ToolCallFinalResult if TYPE_CHECKING: from onyx.db.models import ChatMessage class PreviousMessage(BaseModel): """Simplified version of `ChatMessage`""" message: str token_count: int message_type: MessageType files: list[InMemoryChatFile] tool_call: ToolCallFinalResult | None refined_answer_improvement: bool | None @classmethod def from_chat_message( cls, chat_message: "ChatMessage", available_files: list[InMemoryChatFile] ) -> "PreviousMessage": message_file_ids = ( [file["id"] for file in chat_message.files] if chat_message.files else [] ) return cls( message=chat_message.message, token_count=chat_message.token_count, message_type=chat_message.message_type, files=[ file for file in available_files if str(file.file_id) in message_file_ids ], tool_call=ToolCallFinalResult( tool_name=chat_message.tool_call.tool_name, tool_args=chat_message.tool_call.tool_arguments, tool_result=chat_message.tool_call.tool_result, ) if chat_message.tool_call else None, refined_answer_improvement=chat_message.refined_answer_improvement, ) def to_langchain_msg(self) -> BaseMessage: content = build_content_with_imgs(self.message, self.files) if self.message_type == MessageType.USER: return HumanMessage(content=content) elif self.message_type == MessageType.ASSISTANT: return AIMessage(content=content) else: return SystemMessage(content=content)