# This file is purely for development use, not included in any builds from danswer.configs.model_configs import DOC_EMBEDDING_DIM from danswer.datastores.typesense.store import create_typesense_collection from danswer.utils.clients import get_qdrant_client from danswer.utils.clients import get_typesense_client from danswer.utils.logger import setup_logger from qdrant_client.http.models import Distance from qdrant_client.http.models import VectorParams from typesense.exceptions import ObjectNotFound # type: ignore logger = setup_logger() def recreate_qdrant_collection( collection_name: str, embedding_dim: int = DOC_EMBEDDING_DIM ) -> None: logger.info(f"Attempting to recreate Qdrant collection {collection_name}") result = get_qdrant_client().recreate_collection( collection_name=collection_name, vectors_config=VectorParams(size=embedding_dim, distance=Distance.COSINE), ) if not result: raise RuntimeError("Could not create Qdrant collection") def recreate_typesense_collection(collection_name: str) -> None: logger.info(f"Attempting to recreate Typesense collection {collection_name}") ts_client = get_typesense_client() try: ts_client.collections[collection_name].delete() except ObjectNotFound: logger.debug(f"Collection {collection_name} does not already exist") create_typesense_collection(collection_name) if __name__ == "__main__": recreate_qdrant_collection("danswer_index") recreate_typesense_collection("danswer_index")