import gc from typing import Optional from fastapi import APIRouter from fastapi import HTTPException from sentence_transformers import CrossEncoder # type: ignore from sentence_transformers import SentenceTransformer # type: ignore from danswer.utils.logger import setup_logger from model_server.constants import MODEL_WARM_UP_STRING from model_server.utils import simple_log_function_time from shared_configs.configs import CROSS_EMBED_CONTEXT_SIZE from shared_configs.configs import CROSS_ENCODER_MODEL_ENSEMBLE from shared_configs.configs import INDEXING_ONLY from shared_configs.model_server_models import EmbedRequest from shared_configs.model_server_models import EmbedResponse from shared_configs.model_server_models import RerankRequest from shared_configs.model_server_models import RerankResponse logger = setup_logger() router = APIRouter(prefix="/encoder") _GLOBAL_MODELS_DICT: dict[str, "SentenceTransformer"] = {} _RERANK_MODELS: Optional[list["CrossEncoder"]] = None def get_embedding_model( model_name: str, max_context_length: int, ) -> "SentenceTransformer": from sentence_transformers import SentenceTransformer # type: ignore global _GLOBAL_MODELS_DICT # A dictionary to store models if _GLOBAL_MODELS_DICT is None: _GLOBAL_MODELS_DICT = {} if model_name not in _GLOBAL_MODELS_DICT: logger.info(f"Loading {model_name}") model = SentenceTransformer(model_name) model.max_seq_length = max_context_length _GLOBAL_MODELS_DICT[model_name] = model elif max_context_length != _GLOBAL_MODELS_DICT[model_name].max_seq_length: _GLOBAL_MODELS_DICT[model_name].max_seq_length = max_context_length return _GLOBAL_MODELS_DICT[model_name] def get_local_reranking_model_ensemble( model_names: list[str] = CROSS_ENCODER_MODEL_ENSEMBLE, max_context_length: int = CROSS_EMBED_CONTEXT_SIZE, ) -> list[CrossEncoder]: global _RERANK_MODELS if _RERANK_MODELS is None or max_context_length != _RERANK_MODELS[0].max_length: del _RERANK_MODELS gc.collect() _RERANK_MODELS = [] for model_name in model_names: logger.info(f"Loading {model_name}") model = CrossEncoder(model_name) model.max_length = max_context_length _RERANK_MODELS.append(model) return _RERANK_MODELS def warm_up_cross_encoders() -> None: logger.info(f"Warming up Cross-Encoders: {CROSS_ENCODER_MODEL_ENSEMBLE}") cross_encoders = get_local_reranking_model_ensemble() [ cross_encoder.predict((MODEL_WARM_UP_STRING, MODEL_WARM_UP_STRING)) for cross_encoder in cross_encoders ] @simple_log_function_time() def embed_text( texts: list[str], model_name: str, max_context_length: int, normalize_embeddings: bool, ) -> list[list[float]]: model = get_embedding_model( model_name=model_name, max_context_length=max_context_length ) embeddings = model.encode(texts, normalize_embeddings=normalize_embeddings) if not isinstance(embeddings, list): embeddings = embeddings.tolist() return embeddings @simple_log_function_time() def calc_sim_scores(query: str, docs: list[str]) -> list[list[float]]: cross_encoders = get_local_reranking_model_ensemble() sim_scores = [ encoder.predict([(query, doc) for doc in docs]).tolist() # type: ignore for encoder in cross_encoders ] return sim_scores @router.post("/bi-encoder-embed") async def process_embed_request( embed_request: EmbedRequest, ) -> EmbedResponse: try: embeddings = embed_text( texts=embed_request.texts, model_name=embed_request.model_name, max_context_length=embed_request.max_context_length, normalize_embeddings=embed_request.normalize_embeddings, ) return EmbedResponse(embeddings=embeddings) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @router.post("/cross-encoder-scores") async def process_rerank_request(embed_request: RerankRequest) -> RerankResponse: """Cross encoders can be purely black box from the app perspective""" if INDEXING_ONLY: raise RuntimeError("Indexing model server should not call intent endpoint") try: sim_scores = calc_sim_scores( query=embed_request.query, docs=embed_request.documents ) return RerankResponse(scores=sim_scores) except Exception as e: raise HTTPException(status_code=500, detail=str(e))