/* * This file is part of the VanitySearch distribution (https://github.com/JeanLucPons/VanitySearch). * Copyright (c) 2019 Jean Luc PONS. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 3. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "sha512.h" #define BSWAP #define SHA512_BLOCK_SIZE 128 #define SHA512_HASH_LENGTH 64 #define MIN(x,y) (xy)?x:y; /// Internal SHA-512 implementation. namespace _sha512 { static const uint64_t K[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; #ifndef WIN64 #define _byteswap_ulong __builtin_bswap32 #define _byteswap_uint64 __builtin_bswap64 inline uint64_t _rotr64(uint64_t x, uint8_t r) { asm("rorq %1,%0" : "+r" (x) : "c" (r)); return x; } #endif #define ROR(x,n) _rotr64(x, n) #define S0(x) (ROR(x, 28) ^ ROR(x, 34) ^ ROR(x, 39)) #define S1(x) (ROR(x, 14) ^ ROR(x, 18) ^ ROR(x, 41)) #define G0(x) (ROR(x, 1) ^ ROR(x, 8) ^ (x >> 7)) #define G1(x) (ROR(x, 19) ^ ROR(x, 61) ^ (x >> 6)) #define ROUND(i, a,b,c,d,e,f,g,h) \ t = h + S1(e) + (g ^ (e & (f ^ g))) + K[i] + W[i]; \ d += t; \ h = t + S0(a) + ( ((a | b) & c) | (a & b) ) #ifdef BSWAP #define READBE64(ptr) _byteswap_uint64(*(uint64_t *)(ptr)); #define WRITEBE64(ptr,x) *((uint64_t *)(ptr)) = _byteswap_uint64(x); #define READBE32(i) _byteswap_ulong((uint32_t)(i)); #else #define READBE64(ptr) *(uint64_t *)(ptr); #define WRITEBE64(ptr,x) *(ptr) = x; #define READBE32(i) (uint32_t)(i); #endif static void Transform(uint64_t state[8], const uint8_t buf[128]) { uint64_t W[80], t; uint64_t a, b, c, d, e, f, g, h; int i; a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; W[0] = READBE64(buf + 0x0); W[1] = READBE64(buf + 0x8); W[2] = READBE64(buf + 0x10); W[3] = READBE64(buf + 0x18); W[4] = READBE64(buf + 0x20); W[5] = READBE64(buf + 0x28); W[6] = READBE64(buf + 0x30); W[7] = READBE64(buf + 0x38); W[8] = READBE64(buf + 0x40); W[9] = READBE64(buf + 0x48); W[10] = READBE64(buf + 0x50); W[11] = READBE64(buf + 0x58); W[12] = READBE64(buf + 0x60); W[13] = READBE64(buf + 0x68); W[14] = READBE64(buf + 0x70); W[15] = READBE64(buf + 0x78); for(i = 16; i < 80; i++) W[i] = W[i - 16] + G0(W[i - 15]) + W[i - 7] + G1(W[i - 2]); for (i = 0; i < 80; i += 8) { ROUND(i + 0, a, b, c, d, e, f, g, h); ROUND(i + 1, h, a, b, c, d, e, f, g); ROUND(i + 2, g, h, a, b, c, d, e, f); ROUND(i + 3, f, g, h, a, b, c, d, e); ROUND(i + 4, e, f, g, h, a, b, c, d); ROUND(i + 5, d, e, f, g, h, a, b, c); ROUND(i + 6, c, d, e, f, g, h, a, b); ROUND(i + 7, b, c, d, e, f, g, h, a); } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } } class CSHA512 { private: uint64_t s[8]; unsigned char buf[128]; size_t buffSize; size_t count; public: CSHA512(); void Initialize(); void Write(const unsigned char* data, size_t len); void WriteDirect128(const unsigned char* data); void WriteDirect64(const unsigned char* data); void Finalize(unsigned char hash[64]); }; CSHA512::CSHA512() { Initialize(); } void CSHA512::Initialize() { buffSize = 0; count = 0; s[0] = 0x6a09e667f3bcc908ULL; s[1] = 0xbb67ae8584caa73bULL; s[2] = 0x3c6ef372fe94f82bULL; s[3] = 0xa54ff53a5f1d36f1ULL; s[4] = 0x510e527fade682d1ULL; s[5] = 0x9b05688c2b3e6c1fULL; s[6] = 0x1f83d9abfb41bd6bULL; s[7] = 0x5be0cd19137e2179ULL; } void CSHA512::Write(const unsigned char* data, size_t len) { if (buffSize > 0) { // Fill internal buffer up and transform size_t fill = MIN(len,128-buffSize); memcpy(buf+buffSize,data, fill); len -= fill; buffSize += fill; if(buffSize < 128) return; _sha512::Transform(s, buf); count++; } // Internal buffer is empty while (len >= 128) { _sha512::Transform(s, data); count++; data += 128; len -= 128; } // save rest for next time memcpy(buf,data,len); buffSize = len; } // Write 128 bytes aligned (buffsize must be 0) void CSHA512::WriteDirect128(const unsigned char* data) { _sha512::Transform(s, data); count++; } // Write 64 bytes aligned (buffsize must be 0) void CSHA512::WriteDirect64(const unsigned char* data) { memcpy(buf, data, 64); buffSize = 64; } void CSHA512::Finalize(unsigned char hash[64]) { size_t rest; size_t i; rest = buffSize; // End code buf[buffSize++] = 0x80; if (buffSize > 112) { memset(buf+buffSize,0,128-buffSize); _sha512::Transform(s, buf); buffSize = 0; } memset(buf+buffSize,0,112-buffSize); // Write length (128bit big-endian) WRITEBE64(buf + 112, count >> 54); WRITEBE64(buf + 120, ((count << 7) | rest) << 3); _sha512::Transform(s, buf); for (i = 0; i < 8; i++) WRITEBE64(hash + 8 * i, s[i]); } /* padding */ #define IPAD 0x36 #define IPADLL 0x3636363636363636LL #define OPAD 0x5c #define OPADLL 0x5c5c5c5c5c5c5c5cLL void hmac_sha512_init(CSHA512 &ctx, const uint8_t key[SHA512_BLOCK_SIZE]) { uint64_t pad[SHA512_BLOCK_SIZE/8]; uint64_t *keyPtr = (uint64_t *)key; int i; // Inner padding for (i = 0; i < SHA512_BLOCK_SIZE/8; i++) pad[i] = keyPtr[i] ^ IPADLL; ctx.Initialize(); ctx.WriteDirect128((unsigned char *)pad); } void hmac_sha512_done(CSHA512 &ctx, const uint8_t key[SHA512_BLOCK_SIZE], uint8_t result[SHA512_HASH_LENGTH]) { uint64_t pad[SHA512_BLOCK_SIZE/8]; uint64_t *keyPtr = (uint64_t *)key; uint8_t ihash[SHA512_HASH_LENGTH]; int i; // Finalize inner hash ctx.Finalize(ihash); // Construct outer padding for (i = 0; i < SHA512_BLOCK_SIZE/8; i++) pad[i] = keyPtr[i] ^ OPADLL; // Final hash CSHA512 c; c.WriteDirect128((unsigned char *)pad); c.WriteDirect64(ihash); c.Finalize(result); } void pbkdf2_hmac_sha512(uint8_t *out, size_t outlen, const uint8_t *passwd, size_t passlen, const uint8_t *salt, size_t saltlen, uint64_t iter) { CSHA512 hmac, hmac_template; uint32_t i, be32i; uint64_t j; int k; uint8_t key[SHA512_BLOCK_SIZE]; uint8_t F[SHA512_HASH_LENGTH], U[SHA512_HASH_LENGTH]; uint64_t *Fptr = (uint64_t *)F; uint64_t *Uptr = (uint64_t *)U; size_t need; if (passlen < SHA512_BLOCK_SIZE) { memcpy(key, passwd, passlen); memset(key + passlen, 0, SHA512_BLOCK_SIZE - passlen); } else { hmac.Write(passwd, passlen); hmac.Finalize(key); memset(key + SHA512_HASH_LENGTH, 0, SHA512_BLOCK_SIZE - SHA512_HASH_LENGTH); } hmac_sha512_init(hmac_template, key); hmac_template.Write(salt, saltlen); for (i = 1; outlen > 0; i++) { hmac = hmac_template; be32i = READBE32(i); hmac.Write((unsigned char *)&be32i, sizeof(be32i)); hmac_sha512_done(hmac, key, U); memcpy(F, U, SHA512_HASH_LENGTH); for (j = 2; j <= iter; j++) { hmac_sha512_init(hmac, key); hmac.WriteDirect64(U); hmac_sha512_done(hmac, key, U); for (k = 0; k < SHA512_HASH_LENGTH/8; k++) Fptr[k] ^= Uptr[k]; } need = MIN(SHA512_HASH_LENGTH, outlen); memcpy(out, F, need); out += need; outlen -= need; } } void hmac_sha512(unsigned char *key, int key_length, unsigned char *message, int message_length, unsigned char *digest) { uint8_t ipad[SHA512_BLOCK_SIZE]; uint8_t opad[SHA512_BLOCK_SIZE]; uint8_t hash[SHA512_HASH_LENGTH]; int i; // TODO Handle key larger than 128 for (i = 0; i < key_length && i < SHA512_BLOCK_SIZE; i++) { ipad[i] = key[i] ^ IPAD; opad[i] = key[i] ^ OPAD; } for (; i < SHA512_BLOCK_SIZE; i++) { ipad[i] = IPAD; opad[i] = OPAD; } CSHA512 h; h.WriteDirect128(ipad); h.Write(message, message_length); h.Finalize(hash); h.Initialize(); h.WriteDirect128(opad); h.Write(hash, SHA512_HASH_LENGTH); h.Finalize(digest); } void sha512(unsigned char *input, int length, unsigned char *digest) { CSHA512 sha; sha.Write(input, length); sha.Finalize(digest); } std::string sha512_hex(unsigned char *digest) { char buf[2 * 64 + 1]; buf[2 * 64] = 0; for (int i = 0; i < 64; i++) sprintf(buf + i * 2, "%02x", digest[i]); return std::string(buf); }