diff --git a/brontide/fuzz_test.go b/brontide/fuzz_test.go index 4cd43c084..56592d1ff 100644 --- a/brontide/fuzz_test.go +++ b/brontide/fuzz_test.go @@ -2,12 +2,16 @@ package brontide import ( "bytes" + "crypto/ecdsa" "encoding/hex" + "io" "math" + "math/rand" "testing" "github.com/btcsuite/btcd/btcec/v2" "github.com/davecgh/go-spew/spew" + "github.com/decred/dcrd/dcrec/secp256k1/v4" "github.com/lightningnetwork/lnd/keychain" ) @@ -98,18 +102,38 @@ func dumpAndFail(t *testing.T, initiator, responder *Machine, err error) { spew.Sdump(initiator), spew.Sdump(responder)) } -// getBrontideMachines returns two brontide machines that use random keys -// everywhere. -func getBrontideMachines() (*Machine, *Machine) { - initPriv, _ := btcec.NewPrivateKey() - respPriv, _ := btcec.NewPrivateKey() - respPub := (respPriv.PubKey()) +// newInsecurePrivateKey returns a private key that is generated using a +// cryptographically insecure RNG. This function should only be used for testing +// where reproducibility is required. +func newInsecurePrivateKey(t *testing.T, + insecureRNG io.Reader) *btcec.PrivateKey { + + key, err := ecdsa.GenerateKey(secp256k1.S256(), insecureRNG) + if err != nil { + t.Fatalf("error generating private key: %v", err) + } + + return secp256k1.PrivKeyFromBytes(key.D.Bytes()) +} + +// getBrontideMachines returns two brontide machines that use pseudorandom keys +// everywhere, generated from seed. +func getBrontideMachines(t *testing.T, seed int64) (*Machine, *Machine) { + rng := rand.New(rand.NewSource(seed)) + + initPriv := newInsecurePrivateKey(t, rng) + respPriv := newInsecurePrivateKey(t, rng) + respPub := respPriv.PubKey() initPrivECDH := &keychain.PrivKeyECDH{PrivKey: initPriv} respPrivECDH := &keychain.PrivKeyECDH{PrivKey: respPriv} - initiator := NewBrontideMachine(true, initPrivECDH, respPub) - responder := NewBrontideMachine(false, respPrivECDH, nil) + ephGen := EphemeralGenerator(func() (*btcec.PrivateKey, error) { + return newInsecurePrivateKey(t, rng), nil + }) + + initiator := NewBrontideMachine(true, initPrivECDH, respPub, ephGen) + responder := NewBrontideMachine(false, respPrivECDH, nil, ephGen) return initiator, responder } @@ -135,14 +159,14 @@ func getStaticBrontideMachines() (*Machine, *Machine) { // FuzzRandomActOne fuzz tests ActOne in the brontide handshake. func FuzzRandomActOne(f *testing.F) { - f.Fuzz(func(t *testing.T, data []byte) { + f.Fuzz(func(t *testing.T, seed int64, data []byte) { // Check if data is large enough. if len(data) < ActOneSize { return } // This will return brontide machines with random keys. - _, responder := getBrontideMachines() + _, responder := getBrontideMachines(t, seed) // Copy data into [ActOneSize]byte. var actOne [ActOneSize]byte @@ -157,14 +181,14 @@ func FuzzRandomActOne(f *testing.F) { // FuzzRandomActThree fuzz tests ActThree in the brontide handshake. func FuzzRandomActThree(f *testing.F) { - f.Fuzz(func(t *testing.T, data []byte) { + f.Fuzz(func(t *testing.T, seed int64, data []byte) { // Check if data is large enough. if len(data) < ActThreeSize { return } // This will return brontide machines with random keys. - initiator, responder := getBrontideMachines() + initiator, responder := getBrontideMachines(t, seed) // Generate ActOne and send to the responder. actOne, err := initiator.GenActOne() @@ -199,14 +223,14 @@ func FuzzRandomActThree(f *testing.F) { // FuzzRandomActTwo fuzz tests ActTwo in the brontide handshake. func FuzzRandomActTwo(f *testing.F) { - f.Fuzz(func(t *testing.T, data []byte) { + f.Fuzz(func(t *testing.T, seed int64, data []byte) { // Check if data is large enough. if len(data) < ActTwoSize { return } // This will return brontide machines with random keys. - initiator, _ := getBrontideMachines() + initiator, _ := getBrontideMachines(t, seed) // Generate ActOne - this isn't sent to the responder because // nothing is done with the responder machine and this would @@ -231,9 +255,9 @@ func FuzzRandomActTwo(f *testing.F) { // FuzzRandomInitDecrypt fuzz tests decrypting arbitrary data with the // initiator. func FuzzRandomInitDecrypt(f *testing.F) { - f.Fuzz(func(t *testing.T, data []byte) { + f.Fuzz(func(t *testing.T, seed int64, data []byte) { // This will return brontide machines with random keys. - initiator, responder := getBrontideMachines() + initiator, responder := getBrontideMachines(t, seed) // Complete the brontide handshake. completeHandshake(t, initiator, responder) @@ -252,7 +276,7 @@ func FuzzRandomInitDecrypt(f *testing.F) { // FuzzRandomInitEncDec fuzz tests round-trip encryption and decryption between // the initiator and the responder. func FuzzRandomInitEncDec(f *testing.F) { - f.Fuzz(func(t *testing.T, data []byte) { + f.Fuzz(func(t *testing.T, seed int64, data []byte) { // Ensure that length of message is not greater than max allowed // size. if len(data) > math.MaxUint16 { @@ -260,7 +284,7 @@ func FuzzRandomInitEncDec(f *testing.F) { } // This will return brontide machines with random keys. - initiator, responder := getBrontideMachines() + initiator, responder := getBrontideMachines(t, seed) // Complete the brontide handshake. completeHandshake(t, initiator, responder) @@ -295,7 +319,7 @@ func FuzzRandomInitEncDec(f *testing.F) { // FuzzRandomInitEncrypt fuzz tests the encryption of arbitrary data with the // initiator. func FuzzRandomInitEncrypt(f *testing.F) { - f.Fuzz(func(t *testing.T, data []byte) { + f.Fuzz(func(t *testing.T, seed int64, data []byte) { // Ensure that length of message is not greater than max allowed // size. if len(data) > math.MaxUint16 { @@ -303,7 +327,7 @@ func FuzzRandomInitEncrypt(f *testing.F) { } // This will return brontide machines with random keys. - initiator, responder := getBrontideMachines() + initiator, responder := getBrontideMachines(t, seed) // Complete the brontide handshake. completeHandshake(t, initiator, responder) @@ -325,9 +349,9 @@ func FuzzRandomInitEncrypt(f *testing.F) { // FuzzRandomRespDecrypt fuzz tests the decryption of arbitrary data with the // responder. func FuzzRandomRespDecrypt(f *testing.F) { - f.Fuzz(func(t *testing.T, data []byte) { + f.Fuzz(func(t *testing.T, seed int64, data []byte) { // This will return brontide machines with random keys. - initiator, responder := getBrontideMachines() + initiator, responder := getBrontideMachines(t, seed) // Complete the brontide handshake. completeHandshake(t, initiator, responder) @@ -346,7 +370,7 @@ func FuzzRandomRespDecrypt(f *testing.F) { // FuzzRandomRespEncDec fuzz tests round-trip encryption and decryption between // the responder and the initiator. func FuzzRandomRespEncDec(f *testing.F) { - f.Fuzz(func(t *testing.T, data []byte) { + f.Fuzz(func(t *testing.T, seed int64, data []byte) { // Ensure that length of message is not greater than max allowed // size. if len(data) > math.MaxUint16 { @@ -354,7 +378,7 @@ func FuzzRandomRespEncDec(f *testing.F) { } // This will return brontide machines with random keys. - initiator, responder := getBrontideMachines() + initiator, responder := getBrontideMachines(t, seed) // Complete the brontide handshake. completeHandshake(t, initiator, responder) @@ -389,7 +413,7 @@ func FuzzRandomRespEncDec(f *testing.F) { // FuzzRandomRespEncrypt fuzz tests encryption of arbitrary data with the // responder. func FuzzRandomRespEncrypt(f *testing.F) { - f.Fuzz(func(t *testing.T, data []byte) { + f.Fuzz(func(t *testing.T, seed int64, data []byte) { // Ensure that length of message is not greater than max allowed // size. if len(data) > math.MaxUint16 { @@ -397,7 +421,7 @@ func FuzzRandomRespEncrypt(f *testing.F) { } // This will return brontide machines with random keys. - initiator, responder := getBrontideMachines() + initiator, responder := getBrontideMachines(t, seed) // Complete the brontide handshake. completeHandshake(t, initiator, responder)