import json import os from PIL import Image from nostr_sdk import Kind from tqdm import tqdm from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface, process_venv from nostr_dvm.utils.admin_utils import AdminConfig from nostr_dvm.utils.definitions import EventDefinitions from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config from nostr_dvm.utils.nip88_utils import NIP88Config from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag from nostr_dvm.utils.output_utils import upload_media_to_hoster from nostr_dvm.utils.zap_utils import get_price_per_sat """ This File contains a Module to generate an Image on Macs with M1/M2/M3 chips and receive results back. Accepted Inputs: Prompt (text) Outputs: An url to an Image Params: """ class ImageGenerationMLX(DVMTaskInterface): KIND: Kind = EventDefinitions.KIND_NIP90_GENERATE_IMAGE TASK: str = "text-to-image" FIX_COST: float = 120 dependencies = [("nostr-dvm", "nostr-dvm"), ("mlx", "mlx"), ("safetensors", "safetensors"), ("huggingface-hub", "huggingface-hub"), ("regex", "regex"), ("tqdm", "tqdm"), ] async def init_dvm(self, name, dvm_config: DVMConfig, nip89config: NIP89Config, nip88config: NIP88Config = None, admin_config: AdminConfig = None, options=None): dvm_config.SCRIPT = os.path.abspath(__file__) async def is_input_supported(self, tags, client=None, dvm_config=None): for tag in tags: if tag.as_vec()[0] == 'i': input_value = tag.as_vec()[1] input_type = tag.as_vec()[2] if input_type != "text": return False elif tag.as_vec()[0] == 'output': output = tag.as_vec()[1] if (output == "" or not (output == "image/png" or "image/jpg" or output == "image/png;format=url" or output == "image/jpg;format=url")): print("Output format not supported, skipping..") return False return True async def create_request_from_nostr_event(self, event, client=None, dvm_config=None): request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")} prompt = "" width = "1024" height = "1024" for tag in event.tags().to_vec(): if tag.as_vec()[0] == 'i': input_type = tag.as_vec()[2] if input_type == "text": prompt = tag.as_vec()[1] elif tag.as_vec()[0] == 'param': print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2]) if tag.as_vec()[1] == "size": if len(tag.as_vec()) > 3: width = (tag.as_vec()[2]) height = (tag.as_vec()[3]) elif len(tag.as_vec()) == 3: split = tag.as_vec()[2].split("x") if len(split) > 1: width = split[0] height = split[1] elif tag.as_vec()[1] == "model": model = tag.as_vec()[2] elif tag.as_vec()[1] == "quality": quality = tag.as_vec()[2] options = { "prompt": prompt, "size": width + "x" + height, "number": 1 } request_form['options'] = json.dumps(options) return request_form async def process(self, request_form): try: import mlx.core as mx from nostr_dvm.backends.mlx.modules.stable_diffusion import StableDiffusion options = self.set_options(request_form) sd = StableDiffusion() cfg_weight = 7.5 batchsize = 1 n_rows = 1 steps = 50 n_images = options["number"] # Generate the latent vectors using diffusion latents = sd.generate_latents( options["prompt"], n_images=n_images, cfg_weight=cfg_weight, num_steps=steps, negative_text="", ) for x_t in tqdm(latents, total=steps): mx.simplify(x_t) mx.simplify(x_t) mx.eval(x_t) # Decode them into images decoded = [] for i in tqdm(range(0, 1, batchsize)): decoded.append(sd.decode(x_t[i: i + batchsize])) mx.eval(decoded[-1]) # Arrange them on a grid x = mx.concatenate(decoded, axis=0) x = mx.pad(x, [(0, 0), (8, 8), (8, 8), (0, 0)]) B, H, W, C = x.shape x = x.reshape(n_rows, B // n_rows, H, W, C).transpose(0, 2, 1, 3, 4) x = x.reshape(n_rows * H, B // n_rows * W, C) x = (x * 255).astype(mx.uint8) # Save them to disc image = Image.fromarray(x.__array__()) image.save("./outputs/image.jpg") result = await upload_media_to_hoster("./outputs/image.jpg") return result except Exception as e: print("Error in Module") raise Exception(e) # We build an example here that we can call by either calling this file directly from the main directory, # or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the # playground or elsewhere def build_example(name, identifier, admin_config): dvm_config = build_default_config(identifier) admin_config.LUD16 = dvm_config.LN_ADDRESS profit_in_sats = 10 dvm_config.FIX_COST = int(((4.0 / (get_price_per_sat("USD") * 100)) + profit_in_sats)) nip89info = { "name": name, "picture": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg", "about": "I use Replicate to run StableDiffusion XL", "supportsEncryption": True, "acceptsNutZaps": dvm_config.ENABLE_NUTZAP, "nip90Params": { "size": { "required": False, "values": ["1024:1024", "1024x1792", "1792x1024"] } } } nip89config = NIP89Config() nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["picture"]) nip89config.CONTENT = json.dumps(nip89info) return ImageGenerationMLX(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config) if __name__ == '__main__': process_venv(ImageGenerationMLX)