import json import os from nostr_sdk import Kind from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface, process_venv from nostr_dvm.utils.admin_utils import AdminConfig from nostr_dvm.utils.definitions import EventDefinitions from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config from nostr_dvm.utils.nip88_utils import NIP88Config from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag """ This File contains a Module to generate Text, based on a prompt using a LLM (local or API) (Ollama, custom model, chatgpt) Accepted Inputs: Prompt (text) Outputs: Generated text """ class TextGenerationLLMLite(DVMTaskInterface): KIND: Kind = EventDefinitions.KIND_NIP90_GENERATE_TEXT TASK: str = "text-to-text" FIX_COST: float = 0 dependencies = [("nostr-dvm", "nostr-dvm"), ("litellm", "litellm==1.12.3")] async def init_dvm(self, name, dvm_config: DVMConfig, nip89config: NIP89Config, nip88config: NIP88Config = None, admin_config: AdminConfig = None, options=None): dvm_config.SCRIPT = os.path.abspath(__file__) async def is_input_supported(self, tags, client=None, dvm_config=None): for tag in tags: if tag.as_vec()[0] == 'i': input_value = tag.as_vec()[1] input_type = tag.as_vec()[2] if input_type != "text": return False return True async def create_request_from_nostr_event(self, event, client=None, dvm_config=None): request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")} prompt = "" if self.options.get("default_model") and self.options.get("default_model") != "": model = self.options['default_model'] else: model = "gpt-3.5-turbo" # "gpt-4-1106-preview" # This will call chatgpt and requires an OpenAI API Key set in .env if self.options.get("server") and self.options.get("server") != "": server = self.options['server'] else: server = "http://localhost:11434" # default ollama server. This will only be used for ollama models. for tag in event.tags().to_vec(): if tag.as_vec()[0] == 'i': input_type = tag.as_vec()[2] if input_type == "text": prompt = tag.as_vec()[1] options = { "prompt": prompt, "model": model, "server": server } request_form['options'] = json.dumps(options) return request_form async def process(self, request_form): from litellm import completion options = self.set_options(request_form) try: if options["model"].startswith("ollama"): response = completion( model=options["model"], messages=[{"content": options["prompt"], "role": "user"}], api_base=options["server"], stream=False ) print(response.choices[0].message.content) return response.choices[0].message.content else: response = completion( model=options["model"], messages=[{"content": options["prompt"], "role": "user"}], ) print(response.choices[0].message.content) return response.choices[0].message.content except Exception as e: print("Error in Module: " + str(e)) raise Exception(e) # We build an example here that we can call by either calling this file directly from the main directory, # or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the # playground or elsewhere def build_example(name, identifier, admin_config): dvm_config = build_default_config(identifier) admin_config.LUD16 = dvm_config.LN_ADDRESS options = {'default_model': "ollama/llama2-uncensored", 'server': "http://localhost:11434"} nip89info = { "name": name, "picture": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg", "about": "I use a LLM connected via OLLAMA", "supportsEncryption": True, "acceptsNutZaps": dvm_config.ENABLE_NUTZAP, "nip90Params": {} } nip89config = NIP89Config() nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["picture"]) nip89config.CONTENT = json.dumps(nip89info) return TextGenerationLLMLite(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config, options=options) if __name__ == '__main__': process_venv(TextGenerationLLMLite)