import json import os from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface, process_venv from nostr_dvm.utils.admin_utils import AdminConfig from nostr_dvm.utils.definitions import EventDefinitions from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config from nostr_dvm.utils.nip88_utils import NIP88Config from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag from nostr_dvm.utils.nostr_utils import get_referenced_event_by_id, get_event_by_id, get_events_by_ids from nostr_sdk import Tag, Kind """ This File contains a Module to summarize Text, based on a prompt using a the HuggingChat LLM on Huggingface Accepted Inputs: Prompt (text) Outputs: Generated text """ class TextSummarizationHuggingChat(DVMTaskInterface): KIND: Kind = EventDefinitions.KIND_NIP90_SUMMARIZE_TEXT TASK: str = "summarization" FIX_COST: float = 0 dependencies = [("nostr-dvm", "nostr-dvm"), ("hugchat", "hugchat")] def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config, nip88config: NIP88Config = None, admin_config: AdminConfig = None, options=None): dvm_config.SCRIPT = os.path.abspath(__file__) super().__init__(name=name, dvm_config=dvm_config, nip89config=nip89config, nip88config=nip88config, admin_config=admin_config, options=options) def is_input_supported(self, tags, client=None, dvm_config=None): for tag in tags: if tag.as_vec()[0] == 'i': input_value = tag.as_vec()[1] input_type = tag.as_vec()[2] if input_type != "event" and input_type != "job" and input_type != "text": return False return True def create_request_from_nostr_event(self, event, client=None, dvm_config=None): request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")} prompt = "" collect_events = [] for tag in event.tags(): if tag.as_vec()[0] == 'i': input_type = tag.as_vec()[2] if input_type == "text": prompt += tag.as_vec()[1] + "\n" elif input_type == "event": collect_events.append(tag.as_vec()[1]) #evt = get_event_by_id(tag.as_vec()[1], client=client, config=dvm_config) #prompt += evt.content() + "\n" elif input_type == "job": evt = get_referenced_event_by_id(event_id=tag.as_vec()[1], client=client, kinds=[EventDefinitions.KIND_NIP90_RESULT_EXTRACT_TEXT, EventDefinitions.KIND_NIP90_RESULT_SUMMARIZE_TEXT, EventDefinitions.KIND_NIP90_RESULT_TRANSLATE_TEXT, EventDefinitions.KIND_NIP90_RESULT_CONTENT_DISCOVERY], dvm_config=dvm_config) if evt is None: print("Event not found") raise Exception if evt.kind() == EventDefinitions.KIND_NIP90_RESULT_CONTENT_DISCOVERY: result_list = json.loads(evt.content()) prompt = "" for tag in result_list: e_tag = Tag.parse(tag) evt = get_event_by_id(e_tag.as_vec()[1], client=client, config=dvm_config) prompt += evt.content() + "\n" else: prompt = evt.content() evts = get_events_by_ids(collect_events, client=client, config=dvm_config) if evts is not None: for evt in evts: prompt += evt.content() + "\n" options = { "prompt": prompt, } request_form['options'] = json.dumps(options) return request_form def process(self, request_form): from hugchat import hugchat from hugchat.login import Login sign = Login(os.getenv("HUGGINGFACE_EMAIL"), os.getenv("HUGGINGFACE_PASSWORD")) cookie_path_dir = "./cookies_snapshot" try: cookies = sign.loadCookiesFromDir( cookie_path_dir) # This will detect if the JSON file exists, return cookies if it does and raise an Exception if it's not. except: cookies = sign.login() sign.saveCookiesToDir(cookie_path_dir) options = DVMTaskInterface.set_options(request_form) try: chatbot = hugchat.ChatBot(cookies=cookies.get_dict()) # or cookie_path="usercookies/.json" query_result = chatbot.query("Summarize the following notes: " + options["prompt"]) print(query_result["text"]) # or query_result.text or query_result["text"] return str(query_result["text"]).lstrip() except Exception as e: print("Error in Module: " + str(e)) raise Exception(e) # We build an example here that we can call by either calling this file directly from the main directory, # or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the # playground or elsewhere def build_example(name, identifier, admin_config): dvm_config = build_default_config(identifier) admin_config.LUD16 = dvm_config.LN_ADDRESS nip89info = { "name": name, "image": "https://image.nostr.build/720eadc9af89084bb09de659af43ad17fec1f4b0887084e83ac0ae708dfa83a6.png", "about": "I use a LLM connected via Huggingchat to summarize Inputs", "encryptionSupported": True, "cashuAccepted": True, "nip90Params": {} } nip89config = NIP89Config() nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"]) nip89config.CONTENT = json.dumps(nip89info) return TextSummarizationHuggingChat(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config) if __name__ == '__main__': process_venv(TextSummarizationHuggingChat)