import os from multiprocessing.pool import ThreadPool from threading import Thread from backends.nova_server import check_nova_server_status, send_request_to_nova_server from dvm import DVM from interfaces.dvmtaskinterface import DVMTaskInterface from utils.admin_utils import AdminConfig from utils.definitions import EventDefinitions from utils.dvmconfig import DVMConfig """ This File contains a Module to transform Text input on NOVA-Server and receive results back. Accepted Inputs: Prompt (text) Outputs: An url to an Image """ class ImageGenerationSDXL(DVMTaskInterface): NAME: str KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE TASK: str = "text-to-image" COST: int = 5 PK: str def __init__(self, name, dvm_config: DVMConfig, admin_config: AdminConfig = None, default_model=None, default_lora=None): self.NAME = name dvm_config.SUPPORTED_TASKS = [self] dvm_config.DB = "db/" + self.NAME + ".db" self.PK = dvm_config.PRIVATE_KEY self.default_model = default_model self.default_lora = default_lora dvm = DVM nostr_dvm_thread = Thread(target=dvm, args=[dvm_config, admin_config]) nostr_dvm_thread.start() def is_input_supported(self, input_type, input_content): if input_type != "text": return False return True def create_request_form_from_nostr_event(self, event, client=None, dvm_config=None): request_form = {"jobID": event.id().to_hex() + "_"+ self.NAME.replace(" ", "")} request_form["trainerFilePath"] = 'modules\\stablediffusionxl\\stablediffusionxl.trainer' prompt = "" negative_prompt = "" if self.default_model is None: model = "stabilityai/stable-diffusion-xl-base-1.0" else: model = self.default_model # models: juggernautXL, dynavisionXL, colossusProjectXL, newrealityXL, unstable ratio_width = "1" ratio_height = "1" width = "" height = "" if self.default_lora == None: lora = "" else: lora = self.default_lora lora_weight = "" strength = "" guidance_scale = "" for tag in event.tags(): if tag.as_vec()[0] == 'i': input_type = tag.as_vec()[2] if input_type == "text": prompt = tag.as_vec()[1] elif tag.as_vec()[0] == 'param': print(tag.as_vec()[2]) if tag.as_vec()[1] == "negative_prompt": negative_prompt = tag.as_vec()[2] elif tag.as_vec()[1] == "lora": lora = tag.as_vec()[2] elif tag.as_vec()[1] == "lora_weight": lora_weight = tag.as_vec()[2] elif tag.as_vec()[1] == "strength": strength = tag.as_vec()[2] elif tag.as_vec()[1] == "guidance_scale": guidance_scale = tag.as_vec()[2] elif tag.as_vec()[1] == "ratio": if len(tag.as_vec()) > 3: ratio_width = (tag.as_vec()[2]) ratio_height = (tag.as_vec()[3]) elif len(tag.as_vec()) == 3: split = tag.as_vec()[2].split(":") ratio_width = split[0] ratio_height = split[1] #if size is set it will overwrite ratio. elif tag.as_vec()[1] == "size": if len(tag.as_vec()) > 3: width = (tag.as_vec()[2]) height = (tag.as_vec()[3]) elif len(tag.as_vec()) == 3: split = tag.as_vec()[2].split("x") if len(split) > 1: width = split[0] height = split[1] print(width) print(height) elif tag.as_vec()[1] == "model": model = tag.as_vec()[2] prompt = prompt.replace(";", ",") request_form['data'] = '[{"id":"input_prompt","type":"input","src":"request:text","data":"' + prompt + '","active":"True"},{"id":"negative_prompt","type":"input","src":"request:text","data":"' + negative_prompt + '","active":"True"},{"id":"output_image","type":"output","src":"request:image","active":"True"}]' request_form["optStr"] = ('model=' + model + ';ratio=' + str(ratio_width) + '-' + str(ratio_height) + ';size=' + str(width) + '-' + str(height) + ';strength=' + str(strength) + ';guidance_scale=' + str(guidance_scale) + ';lora=' + lora + ';lora_weight=' + lora_weight) return request_form def process(self, request_form): try: # Call the process route of NOVA-Server with our request form. success = send_request_to_nova_server(request_form, os.environ["NOVA_SERVER"]) print(success) pool = ThreadPool(processes=1) thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], os.environ["NOVA_SERVER"])) print("Wait for results of NOVA-Server...") result = thread.get() return str(result) except Exception as e: raise Exception(e)