llm: Separate llamaServer and ollamaServer code paths

Originally, llamaServer represented old memory estimates, which
could be used with either the old or new engine. ollamaServer was
used only for the new estimates and new engine. Since these
implementations did not map directly to engine, there was engine-
specific code in common code paths.

Now that new estimates are always used for the new engine, there is
a direct mapping between server type and engine. This separates out
most of the engine-specific code into the correct implementation
to make things easier to understand.
This commit is contained in:
Jesse Gross
2025-11-06 10:31:08 -08:00
committed by Jesse Gross
parent f560bd077f
commit b13fbad0fe

View File

@@ -84,13 +84,12 @@ type LlamaServer interface {
// llmServer is an instance of a runner hosting a single model
type llmServer struct {
port int
cmd *exec.Cmd
done chan error // Channel to signal when the process exits
status *StatusWriter
options api.Options
numParallel int
modelPath string
port int
cmd *exec.Cmd
done chan error // Channel to signal when the process exits
status *StatusWriter
options api.Options
modelPath string
loadRequest LoadRequest // Parameters used to initialize the runner
mem *ml.BackendMemory // Memory allocations for this model
@@ -100,10 +99,6 @@ type llmServer struct {
llamaModel *llama.Model
llamaModelLock *sync.Mutex
// textProcessor handles text encoding/decoding for the model in the Ollama engine
// nil if this server is running the llama.cpp based engine
textProcessor model.TextProcessor
totalLayers uint64
loadStart time.Time // Record how long it took the model to load
loadProgress float32
@@ -119,6 +114,8 @@ type llamaServer struct {
type ollamaServer struct {
llmServer
textProcessor model.TextProcessor // textProcessor handles text encoding/decoding
}
// LoadModel will load a model from disk. The model must be in the GGML format.
@@ -242,8 +239,6 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
loadRequest: loadRequest,
llamaModel: llamaModel,
llamaModelLock: &sync.Mutex{},
textProcessor: textProcessor,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
loadStart: time.Now(),
@@ -278,7 +273,7 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
}()
if textProcessor != nil {
return &ollamaServer{llmServer: s}, nil
return &ollamaServer{llmServer: s, textProcessor: textProcessor}, nil
} else {
return &llamaServer{llmServer: s, ggml: f}, nil
}
@@ -1681,68 +1676,59 @@ func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, err
return e.Embedding, nil
}
type TokenizeRequest struct {
Content string `json:"content"`
}
type TokenizeResponse struct {
Tokens []int `json:"tokens"`
}
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
func (s *llamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
s.llamaModelLock.Lock()
defer s.llamaModelLock.Unlock()
if s.llamaModel != nil {
return s.llamaModel.Tokenize(content, false, true)
if s.llamaModel == nil {
return nil, fmt.Errorf("no tokenizer configured")
}
if s.textProcessor != nil {
tokens, err := s.textProcessor.Encode(content, false)
if err != nil {
return nil, err
}
toks := make([]int, len(tokens))
for i, t := range tokens {
toks[i] = int(t)
}
return toks, nil
return s.llamaModel.Tokenize(content, false, true)
}
func (s *ollamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
tokens, err := s.textProcessor.Encode(content, false)
if err != nil {
return nil, err
}
// not reached
return nil, fmt.Errorf("no tokenizer configured")
toks := make([]int, len(tokens))
for i, t := range tokens {
toks[i] = int(t)
}
return toks, nil
}
type DetokenizeRequest struct {
Tokens []int `json:"tokens"`
}
type DetokenizeResponse struct {
Content string `json:"content"`
}
func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
func (s *llamaServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
s.llamaModelLock.Lock()
defer s.llamaModelLock.Unlock()
if s.llamaModel != nil {
var resp string
for _, token := range tokens {
resp += s.llamaModel.TokenToPiece(token)
}
return resp, nil
if s.llamaModel == nil {
return "", fmt.Errorf("no tokenizer configured")
}
if s.textProcessor != nil {
toks := make([]int32, len(tokens))
for i, t := range tokens {
toks[i] = int32(t)
}
content, err := s.textProcessor.Decode(toks)
if err != nil {
return "", err
}
return content, nil
var resp string
for _, token := range tokens {
resp += s.llamaModel.TokenToPiece(token)
}
// not reached
return "", fmt.Errorf("no tokenizer configured")
return resp, nil
}
func (s *ollamaServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
toks := make([]int32, len(tokens))
for i, t := range tokens {
toks[i] = int32(t)
}
content, err := s.textProcessor.Decode(toks)
if err != nil {
return "", err
}
return content, nil
}
func (s *llmServer) Close() error {