mirror of
https://github.com/ollama/ollama.git
synced 2025-12-09 23:02:13 +01:00
@@ -198,6 +198,10 @@ type Tensor interface {
|
||||
Copy(ctx Context, t2 Tensor) Tensor
|
||||
Duplicate(ctx Context) Tensor
|
||||
|
||||
Slice(ctx Context, dim, low, high, step int) Tensor
|
||||
Chunk(ctx Context, dim int, size int) []Tensor
|
||||
ChunkSections(ctx Context, dim int, sections ...int) []Tensor
|
||||
|
||||
TopK(ctx Context, k int) Tensor
|
||||
Argsort(ctx Context) Tensor
|
||||
Mean(ctx Context) Tensor
|
||||
|
||||
@@ -1738,3 +1738,66 @@ func (t *Tensor) Clamp(ctx ml.Context, min, max float32) ml.Tensor {
|
||||
t: C.ggml_clamp(ctx.(*Context).ctx, t.t, C.float(min), C.float(max)),
|
||||
}
|
||||
}
|
||||
|
||||
// Slice returns a view of the tensor sliced along dim from low to high in step steps.
|
||||
// Slice panics if the dimension is invalid or the slice parameters are out of range.
|
||||
// If dim=0 and step>1, the tensor is a copy rather than a view to ensure proper shape.
|
||||
func (t *Tensor) Slice(ctx ml.Context, dim int, low, high, step int) ml.Tensor {
|
||||
if dim < 0 || dim >= C.GGML_MAX_DIMS {
|
||||
panic("invalid dimension")
|
||||
} else if low < 0 || high > t.Dim(dim) || low >= high || step < 1 {
|
||||
panic("invalid slice parameters")
|
||||
}
|
||||
|
||||
if dim == 0 && step > 1 {
|
||||
// dim=0,step>1 is a special case so handle it here first
|
||||
return t.View(ctx,
|
||||
low*t.Stride(0), 1,
|
||||
step*t.Stride(0), (high-low+1)/step,
|
||||
t.Stride(1), t.Dim(1),
|
||||
// preserve dim 3 by merging it into dim 2
|
||||
t.Stride(2), t.Dim(2)*t.Dim(3),
|
||||
).Contiguous(ctx, (high-low+1)/step, t.Dim(1), t.Dim(2), t.Dim(3))
|
||||
}
|
||||
|
||||
args := []int{
|
||||
low * t.Stride(dim), t.Dim(0),
|
||||
t.Stride(1), t.Dim(1),
|
||||
t.Stride(2), t.Dim(2),
|
||||
t.Stride(3), t.Dim(3),
|
||||
}
|
||||
|
||||
if step == 1 {
|
||||
args[dim*2+1] = high - low
|
||||
return t.View(ctx, args[0], args[1:]...)
|
||||
} else {
|
||||
args[dim*2] = step * t.Stride(dim)
|
||||
args[dim*2+1] = (high - low + 1) / step
|
||||
return t.View(ctx, args[0], args[1:]...)
|
||||
}
|
||||
}
|
||||
|
||||
// Chunk the tensor into chunk sized tensors along dim. Each sub-tensor is a view of
|
||||
// the original.
|
||||
func (t *Tensor) Chunk(ctx ml.Context, dim, chunk int) []ml.Tensor {
|
||||
sections := make([]int, 0, t.Dim(dim)/chunk+1)
|
||||
for rest := t.Dim(dim); rest > 0; rest -= chunk {
|
||||
sections = append(sections, min(chunk, rest))
|
||||
}
|
||||
return t.ChunkSections(ctx, dim, sections...)
|
||||
}
|
||||
|
||||
// ChunkSections split the tensor into section sized tensors along dim. Each sub-tensor is a
|
||||
// view of the original. The size of the dim must equal the sum of sections.
|
||||
func (t *Tensor) ChunkSections(ctx ml.Context, dim int, sections ...int) []ml.Tensor {
|
||||
var offset int
|
||||
s := make([]ml.Tensor, len(sections))
|
||||
for i, section := range sections {
|
||||
s[i] = t.Slice(ctx, dim, offset, offset+section, 1)
|
||||
offset += section
|
||||
}
|
||||
if offset != t.Dim(dim) {
|
||||
panic("sections do not sum to tensor dimension")
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
@@ -2,6 +2,7 @@ package ggml
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"os"
|
||||
"testing"
|
||||
|
||||
@@ -368,10 +369,714 @@ func TestPermute(t *testing.T) {
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
ctx := setup(t)
|
||||
got := tt.input(ctx).Permute(ctx, tt.shape...).Contiguous(ctx)
|
||||
got := tt.input(ctx).Permute(ctx, tt.shape...)
|
||||
got = got.Contiguous(ctx)
|
||||
if diff := cmp.Diff(tt.want(ctx), got, EquateTensors(ctx)); diff != "" {
|
||||
t.Errorf("Permute() result mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestSlice(t *testing.T) {
|
||||
cases := []struct {
|
||||
dim int
|
||||
low int
|
||||
high int
|
||||
step int
|
||||
input func(ml.Context) ml.Tensor
|
||||
want func(ml.Context) ml.Tensor
|
||||
}{
|
||||
{
|
||||
dim: 0, low: 1, high: 3, step: 1,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 4*4*4*4, 1, ml.DTypeF32).Reshape(ctx, 4, 4, 4, 4)
|
||||
},
|
||||
want: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
1, 2,
|
||||
5, 6,
|
||||
9, 10,
|
||||
13, 14,
|
||||
|
||||
17, 18,
|
||||
21, 22,
|
||||
25, 26,
|
||||
29, 30,
|
||||
|
||||
33, 34,
|
||||
37, 38,
|
||||
41, 42,
|
||||
45, 46,
|
||||
|
||||
49, 50,
|
||||
53, 54,
|
||||
57, 58,
|
||||
61, 62,
|
||||
|
||||
65, 66,
|
||||
69, 70,
|
||||
73, 74,
|
||||
77, 78,
|
||||
|
||||
81, 82,
|
||||
85, 86,
|
||||
89, 90,
|
||||
93, 94,
|
||||
|
||||
97, 98,
|
||||
101, 102,
|
||||
105, 106,
|
||||
109, 110,
|
||||
|
||||
113, 114,
|
||||
117, 118,
|
||||
121, 122,
|
||||
125, 126,
|
||||
|
||||
129, 130,
|
||||
133, 134,
|
||||
137, 138,
|
||||
141, 142,
|
||||
|
||||
145, 146,
|
||||
149, 150,
|
||||
153, 154,
|
||||
157, 158,
|
||||
|
||||
161, 162,
|
||||
165, 166,
|
||||
169, 170,
|
||||
173, 174,
|
||||
|
||||
177, 178,
|
||||
181, 182,
|
||||
185, 186,
|
||||
189, 190,
|
||||
|
||||
193, 194,
|
||||
197, 198,
|
||||
201, 202,
|
||||
205, 206,
|
||||
|
||||
209, 210,
|
||||
213, 214,
|
||||
217, 218,
|
||||
221, 222,
|
||||
|
||||
225, 226,
|
||||
229, 230,
|
||||
233, 234,
|
||||
237, 238,
|
||||
|
||||
241, 242,
|
||||
245, 246,
|
||||
249, 250,
|
||||
253, 254,
|
||||
}, 2, 4, 4, 4)
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 1, low: 1, high: 3, step: 1,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 4*4*4*4, 1, ml.DTypeF32).Reshape(ctx, 4, 4, 4, 4)
|
||||
},
|
||||
want: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
4, 5, 6, 7,
|
||||
8, 9, 10, 11,
|
||||
|
||||
20, 21, 22, 23,
|
||||
24, 25, 26, 27,
|
||||
|
||||
36, 37, 38, 39,
|
||||
40, 41, 42, 43,
|
||||
|
||||
52, 53, 54, 55,
|
||||
56, 57, 58, 59,
|
||||
|
||||
68, 69, 70, 71,
|
||||
72, 73, 74, 75,
|
||||
|
||||
84, 85, 86, 87,
|
||||
88, 89, 90, 91,
|
||||
|
||||
100, 101, 102, 103,
|
||||
104, 105, 106, 107,
|
||||
|
||||
116, 117, 118, 119,
|
||||
120, 121, 122, 123,
|
||||
|
||||
132, 133, 134, 135,
|
||||
136, 137, 138, 139,
|
||||
|
||||
148, 149, 150, 151,
|
||||
152, 153, 154, 155,
|
||||
|
||||
164, 165, 166, 167,
|
||||
168, 169, 170, 171,
|
||||
|
||||
180, 181, 182, 183,
|
||||
184, 185, 186, 187,
|
||||
|
||||
196, 197, 198, 199,
|
||||
200, 201, 202, 203,
|
||||
|
||||
212, 213, 214, 215,
|
||||
216, 217, 218, 219,
|
||||
|
||||
228, 229, 230, 231,
|
||||
232, 233, 234, 235,
|
||||
|
||||
244, 245, 246, 247,
|
||||
248, 249, 250, 251,
|
||||
}, 4, 2, 4, 4)
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 2, low: 1, high: 3, step: 1,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 4*4*4*4, 1, ml.DTypeF32).Reshape(ctx, 4, 4, 4, 4)
|
||||
},
|
||||
want: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
16, 17, 18, 19,
|
||||
20, 21, 22, 23,
|
||||
24, 25, 26, 27,
|
||||
28, 29, 30, 31,
|
||||
|
||||
32, 33, 34, 35,
|
||||
36, 37, 38, 39,
|
||||
40, 41, 42, 43,
|
||||
44, 45, 46, 47,
|
||||
|
||||
80, 81, 82, 83,
|
||||
84, 85, 86, 87,
|
||||
88, 89, 90, 91,
|
||||
92, 93, 94, 95,
|
||||
|
||||
96, 97, 98, 99,
|
||||
100, 101, 102, 103,
|
||||
104, 105, 106, 107,
|
||||
108, 109, 110, 111,
|
||||
|
||||
144, 145, 146, 147,
|
||||
148, 149, 150, 151,
|
||||
152, 153, 154, 155,
|
||||
156, 157, 158, 159,
|
||||
|
||||
160, 161, 162, 163,
|
||||
164, 165, 166, 167,
|
||||
168, 169, 170, 171,
|
||||
172, 173, 174, 175,
|
||||
|
||||
208, 209, 210, 211,
|
||||
212, 213, 214, 215,
|
||||
216, 217, 218, 219,
|
||||
220, 221, 222, 223,
|
||||
|
||||
224, 225, 226, 227,
|
||||
228, 229, 230, 231,
|
||||
232, 233, 234, 235,
|
||||
236, 237, 238, 239,
|
||||
}, 4, 4, 2, 4)
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 3, low: 1, high: 3, step: 1,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 4*4*4*4, 1, ml.DTypeF32).Reshape(ctx, 4, 4, 4, 4)
|
||||
},
|
||||
want: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
64, 65, 66, 67,
|
||||
68, 69, 70, 71,
|
||||
72, 73, 74, 75,
|
||||
76, 77, 78, 79,
|
||||
|
||||
80, 81, 82, 83,
|
||||
84, 85, 86, 87,
|
||||
88, 89, 90, 91,
|
||||
92, 93, 94, 95,
|
||||
|
||||
96, 97, 98, 99,
|
||||
100, 101, 102, 103,
|
||||
104, 105, 106, 107,
|
||||
108, 109, 110, 111,
|
||||
|
||||
112, 113, 114, 115,
|
||||
116, 117, 118, 119,
|
||||
120, 121, 122, 123,
|
||||
124, 125, 126, 127,
|
||||
|
||||
128, 129, 130, 131,
|
||||
132, 133, 134, 135,
|
||||
136, 137, 138, 139,
|
||||
140, 141, 142, 143,
|
||||
|
||||
144, 145, 146, 147,
|
||||
148, 149, 150, 151,
|
||||
152, 153, 154, 155,
|
||||
156, 157, 158, 159,
|
||||
|
||||
160, 161, 162, 163,
|
||||
164, 165, 166, 167,
|
||||
168, 169, 170, 171,
|
||||
172, 173, 174, 175,
|
||||
|
||||
176, 177, 178, 179,
|
||||
180, 181, 182, 183,
|
||||
184, 185, 186, 187,
|
||||
188, 189, 190, 191,
|
||||
}, 4, 4, 4, 2)
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 0, low: 0, high: 4, step: 2,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 4*4*4*4, 1, ml.DTypeF32).Reshape(ctx, 4, 4, 4, 4)
|
||||
},
|
||||
want: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
0, 2,
|
||||
4, 6,
|
||||
8, 10,
|
||||
12, 14,
|
||||
|
||||
16, 18,
|
||||
20, 22,
|
||||
24, 26,
|
||||
28, 30,
|
||||
|
||||
32, 34,
|
||||
36, 38,
|
||||
40, 42,
|
||||
44, 46,
|
||||
|
||||
48, 50,
|
||||
52, 54,
|
||||
56, 58,
|
||||
60, 62,
|
||||
|
||||
64, 66,
|
||||
68, 70,
|
||||
72, 74,
|
||||
76, 78,
|
||||
|
||||
80, 82,
|
||||
84, 86,
|
||||
88, 90,
|
||||
92, 94,
|
||||
|
||||
96, 98,
|
||||
100, 102,
|
||||
104, 106,
|
||||
108, 110,
|
||||
|
||||
112, 114,
|
||||
116, 118,
|
||||
120, 122,
|
||||
124, 126,
|
||||
|
||||
128, 130,
|
||||
132, 134,
|
||||
136, 138,
|
||||
140, 142,
|
||||
|
||||
144, 146,
|
||||
148, 150,
|
||||
152, 154,
|
||||
156, 158,
|
||||
|
||||
160, 162,
|
||||
164, 166,
|
||||
168, 170,
|
||||
172, 174,
|
||||
|
||||
176, 178,
|
||||
180, 182,
|
||||
184, 186,
|
||||
188, 190,
|
||||
|
||||
192, 194,
|
||||
196, 198,
|
||||
200, 202,
|
||||
204, 206,
|
||||
|
||||
208, 210,
|
||||
212, 214,
|
||||
216, 218,
|
||||
220, 222,
|
||||
|
||||
224, 226,
|
||||
228, 230,
|
||||
232, 234,
|
||||
236, 238,
|
||||
|
||||
240, 242,
|
||||
244, 246,
|
||||
248, 250,
|
||||
252, 254,
|
||||
}, 2, 4, 4, 4)
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 1, low: 0, high: 4, step: 2,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 4*4*4*4, 1, ml.DTypeF32).Reshape(ctx, 4, 4, 4, 4)
|
||||
},
|
||||
want: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
0, 1, 2, 3,
|
||||
8, 9, 10, 11,
|
||||
|
||||
16, 17, 18, 19,
|
||||
24, 25, 26, 27,
|
||||
|
||||
32, 33, 34, 35,
|
||||
40, 41, 42, 43,
|
||||
|
||||
48, 49, 50, 51,
|
||||
56, 57, 58, 59,
|
||||
|
||||
64, 65, 66, 67,
|
||||
72, 73, 74, 75,
|
||||
|
||||
80, 81, 82, 83,
|
||||
88, 89, 90, 91,
|
||||
|
||||
96, 97, 98, 99,
|
||||
104, 105, 106, 107,
|
||||
|
||||
112, 113, 114, 115,
|
||||
120, 121, 122, 123,
|
||||
|
||||
128, 129, 130, 131,
|
||||
136, 137, 138, 139,
|
||||
|
||||
144, 145, 146, 147,
|
||||
152, 153, 154, 155,
|
||||
|
||||
160, 161, 162, 163,
|
||||
168, 169, 170, 171,
|
||||
|
||||
176, 177, 178, 179,
|
||||
184, 185, 186, 187,
|
||||
|
||||
192, 193, 194, 195,
|
||||
200, 201, 202, 203,
|
||||
|
||||
208, 209, 210, 211,
|
||||
216, 217, 218, 219,
|
||||
|
||||
224, 225, 226, 227,
|
||||
232, 233, 234, 235,
|
||||
|
||||
240, 241, 242, 243,
|
||||
248, 249, 250, 251,
|
||||
}, 4, 2, 4, 4)
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 2, low: 0, high: 4, step: 2,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 4*4*4*4, 1, ml.DTypeF32).Reshape(ctx, 4, 4, 4, 4)
|
||||
},
|
||||
want: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
0, 1, 2, 3,
|
||||
4, 5, 6, 7,
|
||||
8, 9, 10, 11,
|
||||
12, 13, 14, 15,
|
||||
|
||||
32, 33, 34, 35,
|
||||
36, 37, 38, 39,
|
||||
40, 41, 42, 43,
|
||||
44, 45, 46, 47,
|
||||
|
||||
64, 65, 66, 67,
|
||||
68, 69, 70, 71,
|
||||
72, 73, 74, 75,
|
||||
76, 77, 78, 79,
|
||||
|
||||
96, 97, 98, 99,
|
||||
100, 101, 102, 103,
|
||||
104, 105, 106, 107,
|
||||
108, 109, 110, 111,
|
||||
|
||||
128, 129, 130, 131,
|
||||
132, 133, 134, 135,
|
||||
136, 137, 138, 139,
|
||||
140, 141, 142, 143,
|
||||
|
||||
160, 161, 162, 163,
|
||||
164, 165, 166, 167,
|
||||
168, 169, 170, 171,
|
||||
172, 173, 174, 175,
|
||||
|
||||
192, 193, 194, 195,
|
||||
196, 197, 198, 199,
|
||||
200, 201, 202, 203,
|
||||
204, 205, 206, 207,
|
||||
|
||||
224, 225, 226, 227,
|
||||
228, 229, 230, 231,
|
||||
232, 233, 234, 235,
|
||||
236, 237, 238, 239,
|
||||
}, 4, 4, 2, 4)
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 3, low: 0, high: 4, step: 2,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 4*4*4*4, 1, ml.DTypeF32).Reshape(ctx, 4, 4, 4, 4)
|
||||
},
|
||||
want: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
0, 1, 2, 3,
|
||||
4, 5, 6, 7,
|
||||
8, 9, 10, 11,
|
||||
12, 13, 14, 15,
|
||||
|
||||
16, 17, 18, 19,
|
||||
20, 21, 22, 23,
|
||||
24, 25, 26, 27,
|
||||
28, 29, 30, 31,
|
||||
|
||||
32, 33, 34, 35,
|
||||
36, 37, 38, 39,
|
||||
40, 41, 42, 43,
|
||||
44, 45, 46, 47,
|
||||
|
||||
48, 49, 50, 51,
|
||||
52, 53, 54, 55,
|
||||
56, 57, 58, 59,
|
||||
60, 61, 62, 63,
|
||||
|
||||
128, 129, 130, 131,
|
||||
132, 133, 134, 135,
|
||||
136, 137, 138, 139,
|
||||
140, 141, 142, 143,
|
||||
|
||||
144, 145, 146, 147,
|
||||
148, 149, 150, 151,
|
||||
152, 153, 154, 155,
|
||||
156, 157, 158, 159,
|
||||
|
||||
160, 161, 162, 163,
|
||||
164, 165, 166, 167,
|
||||
168, 169, 170, 171,
|
||||
172, 173, 174, 175,
|
||||
|
||||
176, 177, 178, 179,
|
||||
180, 181, 182, 183,
|
||||
184, 185, 186, 187,
|
||||
188, 189, 190, 191,
|
||||
}, 4, 4, 4, 2)
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
name := fmt.Sprintf("dim=%d,low=%d,high=%d,step=%d", tt.dim, tt.low, tt.high, tt.step)
|
||||
t.Run(name, func(t *testing.T) {
|
||||
ctx := setup(t)
|
||||
got := tt.input(ctx).Slice(ctx, tt.dim, tt.low, tt.high, tt.step)
|
||||
got = got.Contiguous(ctx)
|
||||
if diff := cmp.Diff(tt.want(ctx), got, EquateTensors(ctx)); diff != "" {
|
||||
t.Errorf("Slice() result mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestSplitSections(t *testing.T) {
|
||||
cases := []struct {
|
||||
dim int
|
||||
sections []int
|
||||
input func(ml.Context) ml.Tensor
|
||||
want []func(ml.Context) ml.Tensor
|
||||
}{
|
||||
{
|
||||
dim: 0, sections: []int{1, 1, 1},
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 12, 1, ml.DTypeF32).Reshape(ctx, 3, 4)
|
||||
},
|
||||
want: []func(ml.Context) ml.Tensor{
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{0, 3, 6, 9}, 1, 4)
|
||||
},
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{1, 4, 7, 10}, 1, 4)
|
||||
},
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{2, 5, 8, 11}, 1, 4)
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 1, sections: []int{1, 3},
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 12, 1, ml.DTypeF32).Reshape(ctx, 3, 4)
|
||||
},
|
||||
want: []func(ml.Context) ml.Tensor{
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{0, 1, 2}, 3, 1)
|
||||
},
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
3, 4, 5,
|
||||
6, 7, 8,
|
||||
9, 10, 11,
|
||||
}, 3, 3)
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 0, sections: []int{2, 2},
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 12, 1, ml.DTypeF32).Reshape(ctx, 4, 3)
|
||||
},
|
||||
want: []func(ml.Context) ml.Tensor{
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
0, 1,
|
||||
4, 5,
|
||||
8, 9,
|
||||
}, 2, 3)
|
||||
},
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
2, 3,
|
||||
6, 7,
|
||||
10, 11,
|
||||
}, 2, 3)
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 1, sections: []int{1, 2},
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 12, 1, ml.DTypeF32).Reshape(ctx, 4, 3)
|
||||
},
|
||||
want: []func(ml.Context) ml.Tensor{
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{0, 1, 2, 3}, 4, 1)
|
||||
},
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
4, 5, 6, 7,
|
||||
8, 9, 10, 11,
|
||||
}, 4, 2)
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(fmt.Sprintf("sections=%v", tt.sections), func(t *testing.T) {
|
||||
ctx := setup(t)
|
||||
got := tt.input(ctx).ChunkSections(ctx, tt.dim, tt.sections...)
|
||||
|
||||
for i := range got {
|
||||
got[i] = got[i].Contiguous(ctx)
|
||||
}
|
||||
|
||||
ctx.Forward(got...).Compute(got...)
|
||||
for i, want := range tt.want {
|
||||
if diff := cmp.Diff(want(ctx), got[i], EquateTensors(ctx)); diff != "" {
|
||||
t.Errorf("SplitSections() section %d mismatch (-want +got):\n%s", i, diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestChunk(t *testing.T) {
|
||||
cases := []struct {
|
||||
dim int
|
||||
chunk int
|
||||
input func(ml.Context) ml.Tensor
|
||||
want []func(ml.Context) ml.Tensor
|
||||
}{
|
||||
{
|
||||
dim: 0, chunk: 1,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 12, 1, ml.DTypeF32).Reshape(ctx, 3, 4)
|
||||
},
|
||||
want: []func(ml.Context) ml.Tensor{
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{0, 3, 6, 9}, 1, 4)
|
||||
},
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{1, 4, 7, 10}, 1, 4)
|
||||
},
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{2, 5, 8, 11}, 1, 4)
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 1, chunk: 2,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 12, 1, ml.DTypeF32).Reshape(ctx, 3, 4)
|
||||
},
|
||||
want: []func(ml.Context) ml.Tensor{
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
0, 1, 2,
|
||||
3, 4, 5,
|
||||
}, 3, 2)
|
||||
},
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
6, 7, 8,
|
||||
9, 10, 11,
|
||||
}, 3, 2)
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
dim: 0, chunk: 2,
|
||||
input: func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.Arange(0, 12, 1, ml.DTypeF32).Reshape(ctx, 3, 4)
|
||||
},
|
||||
want: []func(ml.Context) ml.Tensor{
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
0, 1,
|
||||
3, 4,
|
||||
6, 7,
|
||||
9, 10,
|
||||
}, 2, 4)
|
||||
},
|
||||
func(ctx ml.Context) ml.Tensor {
|
||||
return ctx.FromFloats([]float32{
|
||||
2,
|
||||
5,
|
||||
8,
|
||||
11,
|
||||
}, 1, 4)
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(fmt.Sprintf("dim=%d,chunk=%d", tt.dim, tt.chunk), func(t *testing.T) {
|
||||
ctx := setup(t)
|
||||
got := tt.input(ctx).Chunk(ctx, tt.dim, tt.chunk)
|
||||
|
||||
for i := range got {
|
||||
got[i] = got[i].Contiguous(ctx)
|
||||
}
|
||||
|
||||
ctx.Forward(got...).Compute(got...)
|
||||
for i, want := range tt.want {
|
||||
if diff := cmp.Diff(want(ctx), got[i], EquateTensors(ctx)); diff != "" {
|
||||
t.Errorf("Split() section %d mismatch (-want +got):\n%s", i, diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user