call llama.cpp directly from go

This commit is contained in:
Michael Yang
2023-07-07 15:29:17 -07:00
parent a3ec1ec2a0
commit fd4792ec56
16 changed files with 462 additions and 1291 deletions

View File

@@ -1,215 +1,231 @@
// MIT License
// Copyright (c) 2023 go-skynet authors
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package llama
// #cgo LDFLAGS: -Lbuild -lbinding -lllama -lm -lggml_static -lstdc++
// #cgo CXXFLAGS: -std=c++11
// #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
// #include "binding/binding.h"
// #include <stdlib.h>
import "C"
/*
#cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
#include <stdlib.h>
#include "llama.h"
struct llama_sample_options
{
float repeat_penalty;
float frequency_penalty;
float presence_penalty;
float temperature;
int32_t top_k;
float top_p;
float tfs_z;
float typical_p;
int mirostat;
float mirostat_tau;
float mirostat_eta;
};
llama_token llama_sample(
struct llama_context *ctx,
struct llama_token_data *candidates,
size_t n_candidates,
const llama_token *last_tokens,
size_t n_last_tokens,
struct llama_sample_options *opts)
{
llama_token_data_array candidates_p = {
candidates,
n_candidates,
false,
};
llama_sample_repetition_penalty(
ctx, &candidates_p,
last_tokens, n_last_tokens,
opts->repeat_penalty);
llama_sample_frequency_and_presence_penalties(
ctx, &candidates_p,
last_tokens, n_last_tokens,
opts->frequency_penalty, opts->presence_penalty);
if (opts->temperature <= 0) {
return llama_sample_token_greedy(ctx, &candidates_p);
}
if (opts->mirostat == 1) {
int mirostat_m = 100;
float mirostat_mu = 2.0f * opts->mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
return llama_sample_token_mirostat(
ctx, &candidates_p,
opts->mirostat_tau, opts->mirostat_eta,
mirostat_m, &mirostat_mu);
} else if (opts->mirostat == 2) {
float mirostat_mu = 2.0f * opts->mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
return llama_sample_token_mirostat_v2(
ctx, &candidates_p,
opts->mirostat_tau, opts->mirostat_eta,
&mirostat_mu);
} else {
llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
return llama_sample_token(ctx, &candidates_p);
}
}
*/
import "C"
import (
"fmt"
"errors"
"io"
"os"
"strings"
"sync"
"unsafe"
"github.com/jmorganca/ollama/api"
)
type LLama struct {
ctx unsafe.Pointer
embeddings bool
contextSize int
type llama struct {
params *C.struct_llama_context_params
model *C.struct_llama_model
ctx *C.struct_llama_context
api.Options
}
func New(model string, mo ModelOptions) (*LLama, error) {
modelPath := C.CString(model)
defer C.free(unsafe.Pointer(modelPath))
ctx := C.load_model(modelPath, C.int(mo.ContextSize), C.int(mo.Seed), C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM), C.bool(mo.VocabOnly), C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA))
if ctx == nil {
return nil, fmt.Errorf("failed loading model")
func New(model string, opts api.Options) (*llama, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
ll := &LLama{ctx: ctx, contextSize: mo.ContextSize, embeddings: mo.Embeddings}
llm := llama{Options: opts}
return ll, nil
C.llama_init_backend(C.bool(llm.UseNUMA))
params := C.llama_context_default_params()
params.seed = C.uint(llm.Seed)
params.n_ctx = C.int(llm.NumCtx)
params.n_batch = C.int(llm.NumBatch)
params.n_gpu_layers = C.int(llm.NumGPU)
params.main_gpu = C.int(llm.MainGPU)
params.low_vram = C.bool(llm.LowVRAM)
params.f16_kv = C.bool(llm.F16KV)
params.logits_all = C.bool(llm.LogitsAll)
params.vocab_only = C.bool(llm.VocabOnly)
params.use_mmap = C.bool(llm.UseMMap)
params.use_mlock = C.bool(llm.UseMLock)
params.embedding = C.bool(llm.EmbeddingOnly)
llm.params = &params
cModel := C.CString(model)
defer C.free(unsafe.Pointer(cModel))
llm.model = C.llama_load_model_from_file(cModel, params)
llm.ctx = C.llama_new_context_with_model(llm.model, params)
// warm up the model
bos := []C.llama_token{C.llama_token_bos()}
C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
C.llama_reset_timings(llm.ctx)
return &llm, nil
}
func (l *LLama) Free() {
C.llama_binding_free_model(l.ctx)
func (llm *llama) Close() {
defer C.llama_free_model(llm.model)
defer C.llama_free(llm.ctx)
C.llama_print_timings(llm.ctx)
}
func (l *LLama) Eval(text string, po PredictOptions) error {
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 99999999
}
defer C.free(unsafe.Pointer(input))
reverseCount := len(po.StopPrompts)
reversePrompt := make([]*C.char, reverseCount)
var pass **C.char
for i, s := range po.StopPrompts {
cs := C.CString(s)
reversePrompt[i] = cs
pass = &reversePrompt[0]
defer C.free(unsafe.Pointer(cs))
func (llm *llama) Predict(prompt string, fn func(string)) error {
if tokens := llm.tokenize(prompt); tokens != nil {
return llm.generate(tokens, fn)
}
cLogitBias := C.CString(po.LogitBias)
defer C.free(unsafe.Pointer(cLogitBias))
return errors.New("llama: tokenize")
}
cMainGPU := C.CString(po.MainGPU)
defer C.free(unsafe.Pointer(cMainGPU))
func (llm *llama) tokenize(prompt string) []C.llama_token {
cPrompt := C.CString(prompt)
defer C.free(unsafe.Pointer(cPrompt))
cTensorSplit := C.CString(po.TensorSplit)
defer C.free(unsafe.Pointer(cTensorSplit))
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), cLogitBias,
C.bool(po.MLock), C.bool(po.MMap), cMainGPU, cTensorSplit,
)
defer C.llama_free_params(params)
ret := C.eval(params, l.ctx, input)
if ret != 0 {
return fmt.Errorf("inference failed")
tokens := make([]C.llama_token, llm.NumCtx)
if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(tokens), C.int(len(tokens)), true); n > 0 {
return tokens[:n]
}
return nil
}
func (l *LLama) Predict(text string, po PredictOptions) (string, error) {
if po.TokenCallback != nil {
setCallback(l.ctx, po.TokenCallback)
func (llm *llama) detokenize(tokens ...C.llama_token) string {
var sb strings.Builder
for _, token := range tokens {
sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, token)))
}
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 99999999
}
defer C.free(unsafe.Pointer(input))
out := make([]byte, po.Tokens)
reverseCount := len(po.StopPrompts)
reversePrompt := make([]*C.char, reverseCount)
var pass **C.char
for i, s := range po.StopPrompts {
cs := C.CString(s)
reversePrompt[i] = cs
pass = &reversePrompt[0]
defer C.free(unsafe.Pointer(cs))
}
cLogitBias := C.CString(po.LogitBias)
defer C.free(unsafe.Pointer(cLogitBias))
cMainGPU := C.CString(po.MainGPU)
defer C.free(unsafe.Pointer(cMainGPU))
cTensorSplit := C.CString(po.TensorSplit)
defer C.free(unsafe.Pointer(cTensorSplit))
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), cLogitBias,
C.bool(po.MLock), C.bool(po.MMap), cMainGPU, cTensorSplit,
)
defer C.llama_free_params(params)
ret := C.llama_predict(params, l.ctx, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode))
if ret != 0 {
return "", fmt.Errorf("inference failed")
}
res := C.GoString((*C.char)(unsafe.Pointer(&out[0])))
res = strings.TrimPrefix(res, " ")
res = strings.TrimPrefix(res, text)
res = strings.TrimPrefix(res, "\n")
for _, s := range po.StopPrompts {
res = strings.TrimRight(res, s)
}
if po.TokenCallback != nil {
setCallback(l.ctx, nil)
}
return res, nil
return sb.String()
}
// CGo only allows us to use static calls from C to Go, we can't just dynamically pass in func's.
// This is the next best thing, we register the callbacks in this map and call tokenCallback from
// the C code. We also attach a finalizer to LLama, so it will unregister the callback when the
// garbage collection frees it.
func (llm *llama) generate(tokens []C.llama_token, fn func(string)) error {
var opts C.struct_llama_sample_options
opts.repeat_penalty = C.float(llm.RepeatPenalty)
opts.frequency_penalty = C.float(llm.FrequencyPenalty)
opts.presence_penalty = C.float(llm.PresencePenalty)
opts.temperature = C.float(llm.Temperature)
opts.top_k = C.int(llm.TopK)
opts.top_p = C.float(llm.TopP)
opts.tfs_z = C.float(llm.TFSZ)
opts.typical_p = C.float(llm.TypicalP)
opts.mirostat = C.int(llm.Mirostat)
opts.mirostat_tau = C.float(llm.MirostatTau)
opts.mirostat_eta = C.float(llm.MirostatEta)
// SetTokenCallback registers a callback for the individual tokens created when running Predict. It
// will be called once for each token. The callback shall return true as long as the model should
// continue predicting the next token. When the callback returns false the predictor will return.
// The tokens are just converted into Go strings, they are not trimmed or otherwise changed. Also
// the tokens may not be valid UTF-8.
// Pass in nil to remove a callback.
//
// It is save to call this method while a prediction is running.
func (l *LLama) SetTokenCallback(callback func(token string) bool) {
setCallback(l.ctx, callback)
}
pastTokens := deque[C.llama_token]{capacity: llm.RepeatLastN}
var (
m sync.Mutex
callbacks = map[uintptr]func(string) bool{}
)
for C.llama_get_kv_cache_token_count(llm.ctx) < C.int(llm.NumCtx) {
if retval := C.llama_eval(llm.ctx, unsafe.SliceData(tokens), C.int(len(tokens)), C.llama_get_kv_cache_token_count(llm.ctx), C.int(llm.NumThread)); retval != 0 {
return errors.New("llama: eval")
}
//export tokenCallback
func tokenCallback(statePtr unsafe.Pointer, token *C.char) bool {
m.Lock()
defer m.Unlock()
token, err := llm.sample(pastTokens, &opts)
switch {
case err != nil:
return err
case errors.Is(err, io.EOF):
return nil
}
if callback, ok := callbacks[uintptr(statePtr)]; ok {
return callback(C.GoString(token))
fn(llm.detokenize(token))
tokens = []C.llama_token{token}
pastTokens.PushLeft(token)
}
return true
return nil
}
// setCallback can be used to register a token callback for LLama. Pass in a nil callback to
// remove the callback.
func setCallback(statePtr unsafe.Pointer, callback func(string) bool) {
m.Lock()
defer m.Unlock()
func (llm *llama) sample(pastTokens deque[C.llama_token], opts *C.struct_llama_sample_options) (C.llama_token, error) {
numVocab := int(C.llama_n_vocab(llm.ctx))
logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
if callback == nil {
delete(callbacks, uintptr(statePtr))
} else {
callbacks[uintptr(statePtr)] = callback
candidates := make([]C.struct_llama_token_data, 0, numVocab)
for i := 0; i < numVocab; i++ {
candidates = append(candidates, C.llama_token_data{
id: C.int(i),
logit: logits[i],
p: 0,
})
}
token := C.llama_sample(
llm.ctx,
unsafe.SliceData(candidates), C.ulong(len(candidates)),
unsafe.SliceData(pastTokens.Data()), C.ulong(pastTokens.Len()),
opts)
if token != C.llama_token_eos() {
return token, nil
}
return 0, io.EOF
}