mirror of
https://github.com/ollama/ollama.git
synced 2025-11-12 07:47:35 +01:00
call llama.cpp directly from go
This commit is contained in:
364
llama/llama.go
364
llama/llama.go
@@ -1,215 +1,231 @@
|
||||
// MIT License
|
||||
|
||||
// Copyright (c) 2023 go-skynet authors
|
||||
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
|
||||
package llama
|
||||
|
||||
// #cgo LDFLAGS: -Lbuild -lbinding -lllama -lm -lggml_static -lstdc++
|
||||
// #cgo CXXFLAGS: -std=c++11
|
||||
// #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
// #include "binding/binding.h"
|
||||
// #include <stdlib.h>
|
||||
import "C"
|
||||
/*
|
||||
#cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
#include <stdlib.h>
|
||||
#include "llama.h"
|
||||
|
||||
struct llama_sample_options
|
||||
{
|
||||
float repeat_penalty;
|
||||
float frequency_penalty;
|
||||
float presence_penalty;
|
||||
float temperature;
|
||||
int32_t top_k;
|
||||
float top_p;
|
||||
float tfs_z;
|
||||
float typical_p;
|
||||
int mirostat;
|
||||
float mirostat_tau;
|
||||
float mirostat_eta;
|
||||
};
|
||||
|
||||
llama_token llama_sample(
|
||||
struct llama_context *ctx,
|
||||
struct llama_token_data *candidates,
|
||||
size_t n_candidates,
|
||||
const llama_token *last_tokens,
|
||||
size_t n_last_tokens,
|
||||
struct llama_sample_options *opts)
|
||||
{
|
||||
llama_token_data_array candidates_p = {
|
||||
candidates,
|
||||
n_candidates,
|
||||
false,
|
||||
};
|
||||
|
||||
llama_sample_repetition_penalty(
|
||||
ctx, &candidates_p,
|
||||
last_tokens, n_last_tokens,
|
||||
opts->repeat_penalty);
|
||||
|
||||
llama_sample_frequency_and_presence_penalties(
|
||||
ctx, &candidates_p,
|
||||
last_tokens, n_last_tokens,
|
||||
opts->frequency_penalty, opts->presence_penalty);
|
||||
|
||||
if (opts->temperature <= 0) {
|
||||
return llama_sample_token_greedy(ctx, &candidates_p);
|
||||
}
|
||||
|
||||
if (opts->mirostat == 1) {
|
||||
int mirostat_m = 100;
|
||||
float mirostat_mu = 2.0f * opts->mirostat_tau;
|
||||
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
|
||||
return llama_sample_token_mirostat(
|
||||
ctx, &candidates_p,
|
||||
opts->mirostat_tau, opts->mirostat_eta,
|
||||
mirostat_m, &mirostat_mu);
|
||||
} else if (opts->mirostat == 2) {
|
||||
float mirostat_mu = 2.0f * opts->mirostat_tau;
|
||||
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
|
||||
return llama_sample_token_mirostat_v2(
|
||||
ctx, &candidates_p,
|
||||
opts->mirostat_tau, opts->mirostat_eta,
|
||||
&mirostat_mu);
|
||||
} else {
|
||||
llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
|
||||
llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
|
||||
llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
|
||||
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
|
||||
return llama_sample_token(ctx, &candidates_p);
|
||||
}
|
||||
}
|
||||
*/
|
||||
import "C"
|
||||
import (
|
||||
"fmt"
|
||||
"errors"
|
||||
"io"
|
||||
"os"
|
||||
"strings"
|
||||
"sync"
|
||||
"unsafe"
|
||||
|
||||
"github.com/jmorganca/ollama/api"
|
||||
)
|
||||
|
||||
type LLama struct {
|
||||
ctx unsafe.Pointer
|
||||
embeddings bool
|
||||
contextSize int
|
||||
type llama struct {
|
||||
params *C.struct_llama_context_params
|
||||
model *C.struct_llama_model
|
||||
ctx *C.struct_llama_context
|
||||
|
||||
api.Options
|
||||
}
|
||||
|
||||
func New(model string, mo ModelOptions) (*LLama, error) {
|
||||
modelPath := C.CString(model)
|
||||
defer C.free(unsafe.Pointer(modelPath))
|
||||
|
||||
ctx := C.load_model(modelPath, C.int(mo.ContextSize), C.int(mo.Seed), C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM), C.bool(mo.VocabOnly), C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA))
|
||||
if ctx == nil {
|
||||
return nil, fmt.Errorf("failed loading model")
|
||||
func New(model string, opts api.Options) (*llama, error) {
|
||||
if _, err := os.Stat(model); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ll := &LLama{ctx: ctx, contextSize: mo.ContextSize, embeddings: mo.Embeddings}
|
||||
llm := llama{Options: opts}
|
||||
|
||||
return ll, nil
|
||||
C.llama_init_backend(C.bool(llm.UseNUMA))
|
||||
|
||||
params := C.llama_context_default_params()
|
||||
params.seed = C.uint(llm.Seed)
|
||||
params.n_ctx = C.int(llm.NumCtx)
|
||||
params.n_batch = C.int(llm.NumBatch)
|
||||
params.n_gpu_layers = C.int(llm.NumGPU)
|
||||
params.main_gpu = C.int(llm.MainGPU)
|
||||
params.low_vram = C.bool(llm.LowVRAM)
|
||||
params.f16_kv = C.bool(llm.F16KV)
|
||||
params.logits_all = C.bool(llm.LogitsAll)
|
||||
params.vocab_only = C.bool(llm.VocabOnly)
|
||||
params.use_mmap = C.bool(llm.UseMMap)
|
||||
params.use_mlock = C.bool(llm.UseMLock)
|
||||
params.embedding = C.bool(llm.EmbeddingOnly)
|
||||
llm.params = ¶ms
|
||||
|
||||
cModel := C.CString(model)
|
||||
defer C.free(unsafe.Pointer(cModel))
|
||||
|
||||
llm.model = C.llama_load_model_from_file(cModel, params)
|
||||
llm.ctx = C.llama_new_context_with_model(llm.model, params)
|
||||
|
||||
// warm up the model
|
||||
bos := []C.llama_token{C.llama_token_bos()}
|
||||
C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
|
||||
C.llama_reset_timings(llm.ctx)
|
||||
|
||||
return &llm, nil
|
||||
}
|
||||
|
||||
func (l *LLama) Free() {
|
||||
C.llama_binding_free_model(l.ctx)
|
||||
func (llm *llama) Close() {
|
||||
defer C.llama_free_model(llm.model)
|
||||
defer C.llama_free(llm.ctx)
|
||||
|
||||
C.llama_print_timings(llm.ctx)
|
||||
}
|
||||
|
||||
func (l *LLama) Eval(text string, po PredictOptions) error {
|
||||
input := C.CString(text)
|
||||
if po.Tokens == 0 {
|
||||
po.Tokens = 99999999
|
||||
}
|
||||
defer C.free(unsafe.Pointer(input))
|
||||
|
||||
reverseCount := len(po.StopPrompts)
|
||||
reversePrompt := make([]*C.char, reverseCount)
|
||||
var pass **C.char
|
||||
for i, s := range po.StopPrompts {
|
||||
cs := C.CString(s)
|
||||
reversePrompt[i] = cs
|
||||
pass = &reversePrompt[0]
|
||||
defer C.free(unsafe.Pointer(cs))
|
||||
func (llm *llama) Predict(prompt string, fn func(string)) error {
|
||||
if tokens := llm.tokenize(prompt); tokens != nil {
|
||||
return llm.generate(tokens, fn)
|
||||
}
|
||||
|
||||
cLogitBias := C.CString(po.LogitBias)
|
||||
defer C.free(unsafe.Pointer(cLogitBias))
|
||||
return errors.New("llama: tokenize")
|
||||
}
|
||||
|
||||
cMainGPU := C.CString(po.MainGPU)
|
||||
defer C.free(unsafe.Pointer(cMainGPU))
|
||||
func (llm *llama) tokenize(prompt string) []C.llama_token {
|
||||
cPrompt := C.CString(prompt)
|
||||
defer C.free(unsafe.Pointer(cPrompt))
|
||||
|
||||
cTensorSplit := C.CString(po.TensorSplit)
|
||||
defer C.free(unsafe.Pointer(cTensorSplit))
|
||||
|
||||
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
|
||||
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
|
||||
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
|
||||
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
|
||||
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
|
||||
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), cLogitBias,
|
||||
C.bool(po.MLock), C.bool(po.MMap), cMainGPU, cTensorSplit,
|
||||
)
|
||||
defer C.llama_free_params(params)
|
||||
|
||||
ret := C.eval(params, l.ctx, input)
|
||||
if ret != 0 {
|
||||
return fmt.Errorf("inference failed")
|
||||
tokens := make([]C.llama_token, llm.NumCtx)
|
||||
if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(tokens), C.int(len(tokens)), true); n > 0 {
|
||||
return tokens[:n]
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (l *LLama) Predict(text string, po PredictOptions) (string, error) {
|
||||
if po.TokenCallback != nil {
|
||||
setCallback(l.ctx, po.TokenCallback)
|
||||
func (llm *llama) detokenize(tokens ...C.llama_token) string {
|
||||
var sb strings.Builder
|
||||
for _, token := range tokens {
|
||||
sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, token)))
|
||||
}
|
||||
|
||||
input := C.CString(text)
|
||||
if po.Tokens == 0 {
|
||||
po.Tokens = 99999999
|
||||
}
|
||||
defer C.free(unsafe.Pointer(input))
|
||||
|
||||
out := make([]byte, po.Tokens)
|
||||
|
||||
reverseCount := len(po.StopPrompts)
|
||||
reversePrompt := make([]*C.char, reverseCount)
|
||||
var pass **C.char
|
||||
for i, s := range po.StopPrompts {
|
||||
cs := C.CString(s)
|
||||
reversePrompt[i] = cs
|
||||
pass = &reversePrompt[0]
|
||||
defer C.free(unsafe.Pointer(cs))
|
||||
}
|
||||
|
||||
cLogitBias := C.CString(po.LogitBias)
|
||||
defer C.free(unsafe.Pointer(cLogitBias))
|
||||
|
||||
cMainGPU := C.CString(po.MainGPU)
|
||||
defer C.free(unsafe.Pointer(cMainGPU))
|
||||
|
||||
cTensorSplit := C.CString(po.TensorSplit)
|
||||
defer C.free(unsafe.Pointer(cTensorSplit))
|
||||
|
||||
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
|
||||
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
|
||||
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
|
||||
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
|
||||
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
|
||||
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), cLogitBias,
|
||||
C.bool(po.MLock), C.bool(po.MMap), cMainGPU, cTensorSplit,
|
||||
)
|
||||
defer C.llama_free_params(params)
|
||||
|
||||
ret := C.llama_predict(params, l.ctx, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode))
|
||||
if ret != 0 {
|
||||
return "", fmt.Errorf("inference failed")
|
||||
}
|
||||
res := C.GoString((*C.char)(unsafe.Pointer(&out[0])))
|
||||
|
||||
res = strings.TrimPrefix(res, " ")
|
||||
res = strings.TrimPrefix(res, text)
|
||||
res = strings.TrimPrefix(res, "\n")
|
||||
|
||||
for _, s := range po.StopPrompts {
|
||||
res = strings.TrimRight(res, s)
|
||||
}
|
||||
|
||||
if po.TokenCallback != nil {
|
||||
setCallback(l.ctx, nil)
|
||||
}
|
||||
|
||||
return res, nil
|
||||
return sb.String()
|
||||
}
|
||||
|
||||
// CGo only allows us to use static calls from C to Go, we can't just dynamically pass in func's.
|
||||
// This is the next best thing, we register the callbacks in this map and call tokenCallback from
|
||||
// the C code. We also attach a finalizer to LLama, so it will unregister the callback when the
|
||||
// garbage collection frees it.
|
||||
func (llm *llama) generate(tokens []C.llama_token, fn func(string)) error {
|
||||
var opts C.struct_llama_sample_options
|
||||
opts.repeat_penalty = C.float(llm.RepeatPenalty)
|
||||
opts.frequency_penalty = C.float(llm.FrequencyPenalty)
|
||||
opts.presence_penalty = C.float(llm.PresencePenalty)
|
||||
opts.temperature = C.float(llm.Temperature)
|
||||
opts.top_k = C.int(llm.TopK)
|
||||
opts.top_p = C.float(llm.TopP)
|
||||
opts.tfs_z = C.float(llm.TFSZ)
|
||||
opts.typical_p = C.float(llm.TypicalP)
|
||||
opts.mirostat = C.int(llm.Mirostat)
|
||||
opts.mirostat_tau = C.float(llm.MirostatTau)
|
||||
opts.mirostat_eta = C.float(llm.MirostatEta)
|
||||
|
||||
// SetTokenCallback registers a callback for the individual tokens created when running Predict. It
|
||||
// will be called once for each token. The callback shall return true as long as the model should
|
||||
// continue predicting the next token. When the callback returns false the predictor will return.
|
||||
// The tokens are just converted into Go strings, they are not trimmed or otherwise changed. Also
|
||||
// the tokens may not be valid UTF-8.
|
||||
// Pass in nil to remove a callback.
|
||||
//
|
||||
// It is save to call this method while a prediction is running.
|
||||
func (l *LLama) SetTokenCallback(callback func(token string) bool) {
|
||||
setCallback(l.ctx, callback)
|
||||
}
|
||||
pastTokens := deque[C.llama_token]{capacity: llm.RepeatLastN}
|
||||
|
||||
var (
|
||||
m sync.Mutex
|
||||
callbacks = map[uintptr]func(string) bool{}
|
||||
)
|
||||
for C.llama_get_kv_cache_token_count(llm.ctx) < C.int(llm.NumCtx) {
|
||||
if retval := C.llama_eval(llm.ctx, unsafe.SliceData(tokens), C.int(len(tokens)), C.llama_get_kv_cache_token_count(llm.ctx), C.int(llm.NumThread)); retval != 0 {
|
||||
return errors.New("llama: eval")
|
||||
}
|
||||
|
||||
//export tokenCallback
|
||||
func tokenCallback(statePtr unsafe.Pointer, token *C.char) bool {
|
||||
m.Lock()
|
||||
defer m.Unlock()
|
||||
token, err := llm.sample(pastTokens, &opts)
|
||||
switch {
|
||||
case err != nil:
|
||||
return err
|
||||
case errors.Is(err, io.EOF):
|
||||
return nil
|
||||
}
|
||||
|
||||
if callback, ok := callbacks[uintptr(statePtr)]; ok {
|
||||
return callback(C.GoString(token))
|
||||
fn(llm.detokenize(token))
|
||||
|
||||
tokens = []C.llama_token{token}
|
||||
|
||||
pastTokens.PushLeft(token)
|
||||
}
|
||||
|
||||
return true
|
||||
return nil
|
||||
}
|
||||
|
||||
// setCallback can be used to register a token callback for LLama. Pass in a nil callback to
|
||||
// remove the callback.
|
||||
func setCallback(statePtr unsafe.Pointer, callback func(string) bool) {
|
||||
m.Lock()
|
||||
defer m.Unlock()
|
||||
func (llm *llama) sample(pastTokens deque[C.llama_token], opts *C.struct_llama_sample_options) (C.llama_token, error) {
|
||||
numVocab := int(C.llama_n_vocab(llm.ctx))
|
||||
logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
|
||||
|
||||
if callback == nil {
|
||||
delete(callbacks, uintptr(statePtr))
|
||||
} else {
|
||||
callbacks[uintptr(statePtr)] = callback
|
||||
candidates := make([]C.struct_llama_token_data, 0, numVocab)
|
||||
for i := 0; i < numVocab; i++ {
|
||||
candidates = append(candidates, C.llama_token_data{
|
||||
id: C.int(i),
|
||||
logit: logits[i],
|
||||
p: 0,
|
||||
})
|
||||
}
|
||||
|
||||
token := C.llama_sample(
|
||||
llm.ctx,
|
||||
unsafe.SliceData(candidates), C.ulong(len(candidates)),
|
||||
unsafe.SliceData(pastTokens.Data()), C.ulong(pastTokens.Len()),
|
||||
opts)
|
||||
if token != C.llama_token_eos() {
|
||||
return token, nil
|
||||
}
|
||||
|
||||
return 0, io.EOF
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user