package ggml import ( "encoding/binary" "errors" "fmt" "io" "log/slog" "slices" "strings" "github.com/ollama/ollama/fs/util/bufioutil" ) type GGML struct { container model } type model interface { KV() KV Tensors() Tensors } type KV map[string]any func (kv KV) Architecture() string { return kv.String("general.architecture", "unknown") } func (kv KV) Kind() string { return kv.String("general.type", "unknown") } func (kv KV) ParameterCount() uint64 { return keyValue[uint64](kv, "general.parameter_count") } func (kv KV) FileType() fileType { if t := kv.Uint("general.file_type"); t > 0 { return fileType(t) } return fileTypeUnknown } func (kv KV) BlockCount() uint64 { return uint64(kv.Uint("block_count")) } func (kv KV) EmbeddingLength() uint64 { return uint64(kv.Uint("embedding_length")) } func (kv KV) HeadCount() uint64 { return uint64(kv.Uint("attention.head_count")) } func (kv KV) HeadCountKV() uint64 { return uint64(kv.Uint("attention.head_count_kv", 1)) } func (kv KV) EmbeddingHeadCount() uint64 { if heads := kv.HeadCount(); heads > 0 { return kv.EmbeddingLength() / heads } return 0 } func (kv KV) EmbeddingHeadCountK() uint64 { return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount()))) } func (kv KV) EmbeddingHeadCountV() uint64 { return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount()))) } func (kv KV) GQA() uint64 { return kv.HeadCount() / kv.HeadCountKV() } func (kv KV) ContextLength() uint64 { return uint64(kv.Uint("context_length")) } func (kv KV) ChatTemplate() string { return kv.String("tokenizer.chat_template") } func (kv KV) String(key string, defaultValue ...string) string { return keyValue(kv, key, append(defaultValue, "")...) } func (kv KV) Uint(key string, defaultValue ...uint32) uint32 { return keyValue(kv, key, append(defaultValue, 0)...) } func (kv KV) Float(key string, defaultValue ...float32) float32 { return keyValue(kv, key, append(defaultValue, 0)...) } func (kv KV) Bool(key string, defaultValue ...bool) bool { return keyValue(kv, key, append(defaultValue, false)...) } func (kv KV) Strings(key string, defaultValue ...[]string) []string { r := keyValue(kv, key, &array{}) s := make([]string, r.size) for i := range r.size { s[i] = r.values[i].(string) } return s } func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 { r := keyValue(kv, key, &array{}) s := make([]uint32, r.size) for i := range r.size { s[i] = uint32(r.values[i].(int32)) } return s } func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 { r := keyValue(kv, key, &array{}) s := make([]float32, r.size) for i := range r.size { s[i] = float32(r.values[i].(float32)) } return s } func (kv KV) OllamaEngineRequired() bool { return kv.Architecture() == "gemma3" } func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T { if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") { key = kv.Architecture() + "." + key } if val, ok := kv[key]; ok { return val.(T) } slog.Warn("key not found", "key", key, "default", defaultValue[0]) return defaultValue[0] } type Tensors struct { items []*Tensor Offset uint64 } func (s Tensors) Items(prefix ...string) []*Tensor { if len(prefix) == 0 { return s.items } var items []*Tensor for _, t := range s.items { if strings.HasPrefix(t.Name, prefix[0]) { items = append(items, t) } } return items } func (ts Tensors) GroupLayers() map[string]Layer { layers := make(map[string]Layer) for _, t := range ts.items { parts := strings.Split(t.Name, ".") if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 { if len(parts) > index+2 { // blk and mm should have a number after them, join it parts = append( []string{strings.Join(parts[:index+2], ".")}, parts[index+2:]...) } } if _, ok := layers[parts[0]]; !ok { layers[parts[0]] = make(Layer) } layers[parts[0]][strings.Join(parts[1:], ".")] = t } return layers } type Layer map[string]*Tensor func (l Layer) Size() (size uint64) { for _, t := range l { size += t.Size() } return size } type Tensor struct { Name string `json:"name"` Kind uint32 `json:"kind"` Offset uint64 `json:"-"` // Shape is the number of elements in each dimension Shape []uint64 `json:"shape"` io.WriterTo `json:"-"` } func (t Tensor) block() (n int) { if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil { return -1 } return } func (t Tensor) blockSize() uint64 { switch t.Kind { case 0, // F32 1, // F16 24, // I8 25, // I16 26, // I32 27, // I64 28, // F64 30: // BF16 return 1 case 2, // Q4_0 3, // Q4_1 6, // Q5_0 7, // Q5_1 8, // Q8_0 9, // Q8_1 20: // IQ4_NL return 32 default: return 256 } } func (t Tensor) typeSize() uint64 { blockSize := t.blockSize() switch t.Kind { case 0: // FP32 return 4 case 1: // FP16 return 2 case 2: // Q4_0 return 2 + blockSize/2 case 3: // Q4_1 return 2 + 2 + blockSize/2 case 6: // Q5_0 return 2 + 4 + blockSize/2 case 7: // Q5_1 return 2 + 2 + 4 + blockSize/2 case 8: // Q8_0 return 2 + blockSize case 9: // Q8_1 return 2 + 2 + blockSize case 10: // Q2_K return blockSize/16 + blockSize/4 + 2 + 2 case 11: // Q3_K return blockSize/8 + blockSize/4 + 12 + 2 case 12: // Q4_K return 2 + 2 + 12 + blockSize/2 case 13: // Q5_K return 2 + 2 + 12 + blockSize/8 + blockSize/2 case 14: // Q6_K return blockSize/2 + blockSize/4 + blockSize/16 + 2 case 15: // Q8_K return 4 + blockSize + 2*blockSize/16 case 16: // IQ2_XXS return 2 + 2*blockSize/8 case 17: // IQ2_XS return 2 + 2*blockSize/8 + blockSize/32 case 18: // IQ3_XXS return 2 + blockSize/4 + blockSize/8 case 19: // IQ1_S return 2 + blockSize/8 + blockSize/16 case 20: // IQ4_NL return 2 + blockSize/2 case 21: // IQ3_S return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4 case 22: // IQ2_S return 2 + blockSize/4 + blockSize/16 case 23: // IQ4_XS return 2 + 2 + blockSize/2 + blockSize/64 case 24: // I8 return 1 case 25: // I16 return 2 case 26: // I32 return 4 case 27: // I64 return 8 case 28: // F64 return 8 case 29: // IQ1_M return blockSize/8 + blockSize/16 + blockSize/32 case 30: // BF16 return 2 default: return 0 } } func (t Tensor) parameters() uint64 { var count uint64 = 1 for _, n := range t.Shape { count *= n } return count } func (t Tensor) Size() uint64 { return t.parameters() * t.typeSize() / t.blockSize() } func (t Tensor) Type() string { return fileType(t.Kind).String() } type container interface { Name() string Decode(io.ReadSeeker) (model, error) } const ( // Magic constant for `ggml` files (unversioned). FILE_MAGIC_GGML = 0x67676d6c // Magic constant for `ggml` files (versioned, ggmf). FILE_MAGIC_GGMF = 0x67676d66 // Magic constant for `ggml` files (versioned, ggjt). FILE_MAGIC_GGJT = 0x67676a74 // Magic constant for `ggla` files (LoRA adapter). FILE_MAGIC_GGLA = 0x67676C61 // Magic constant for `gguf` files (versioned, gguf) FILE_MAGIC_GGUF_LE = 0x46554747 FILE_MAGIC_GGUF_BE = 0x47475546 ) var ErrUnsupportedFormat = errors.New("unsupported model format") func DetectContentType(b []byte) string { switch binary.LittleEndian.Uint32(b[:4]) { case FILE_MAGIC_GGML: return "ggml" case FILE_MAGIC_GGMF: return "ggmf" case FILE_MAGIC_GGJT: return "ggjt" case FILE_MAGIC_GGLA: return "ggla" case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE: return "gguf" default: return "" } } // Decode decodes a GGML model from the given reader. // // It collects array values for arrays with a size less than or equal to // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If // the maxArraySize is negative, all arrays are collected. func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) { if maxArraySize == 0 { maxArraySize = 1024 } rs = bufioutil.NewBufferedSeeker(rs, 32<<10) var magic uint32 if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil { return nil, 0, err } var c container switch magic { case FILE_MAGIC_GGUF_LE: c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize} case FILE_MAGIC_GGUF_BE: c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize} default: return nil, 0, errors.New("invalid file magic") } model, err := c.Decode(rs) if err != nil { return nil, 0, err } offset, err := rs.Seek(0, io.SeekCurrent) if err != nil { return nil, 0, err } // final model type return &GGML{ container: c, model: model, }, offset, nil } func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) { embedding := f.KV().EmbeddingLength() heads := f.KV().HeadCount() headsKV := f.KV().HeadCountKV() vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size) embeddingHeads := f.KV().EmbeddingHeadCount() embeddingHeadsK := f.KV().EmbeddingHeadCountK() embeddingHeadsV := f.KV().EmbeddingHeadCountV() layers := f.Tensors().GroupLayers() bytesPerElement := kvCacheBytesPerElement(kvCacheType) kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement) switch f.KV().Architecture() { case "llama": fullOffload = max( 4*batch*(1+4*embedding+context*(1+heads)), 4*batch*(embedding+vocab), ) partialOffload = 4 * batch * embedding partialOffload += max( 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV), 4*batch*(embedding+vocab)+embedding*vocab*105/128, ) if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok { // mixtral 8x22b ff := uint64(f.KV()["llama.feed_forward_length"].(uint32)) partialOffload = max( 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV), 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch), ) } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok { // mixtral 8x7b ffnGateWeight1 := ffnGateWeight.Shape[1] fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1) partialOffload = max( 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16, 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16), ) } case "mllama": var visionTokens, tiles uint64 = 1601, 4 if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok { kv = headsKV * (embeddingHeadsK + embeddingHeadsV) * // one for K, one for V (2* // sizeof(float16) (f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers context + 4* // sizeof(float32) uint64(crossAttentionLayers.size)* // num cross attention layers visionTokens* tiles) } fullOffload = max( 4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)), // vocab graph 4*batch*(embedding+vocab), ) var ropeFreqsCount uint64 if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok { if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok { ropeFreqsCount = ropeFreqsWeights.parameters() } } partialOffload = max( 4*(batch* (2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+ ropeFreqsCount+ embeddingHeadsK*context*headsKV), // vocab graph 4*batch*(embedding+vocab)+embedding*vocab*105/128, ) case "gemma", "gemma2", "gemma3": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads), ) partialOffload = max( 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch, 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+ 4*embeddingHeadsK*context*8+ embedding*embeddingHeadsK*heads*9/16, ) case "command-r": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(2+4*embedding+context*(1+heads)), ) partialOffload = max( 4*batch*(embedding+vocab)+embedding*vocab*105/128, 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16, ) case "qwen2": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(1+2*embedding+context+context*heads), ) partialOffload = max( 4*batch*(embedding+vocab)+embedding*vocab*105/128, 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)), ) case "phi2": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(1+4*embedding+context+context*heads), ) partialOffload = max( 4*batch*(2*embedding+vocab)+embedding*vocab*105/128, 4*batch*(2+3*embedding+context+context*heads), ) case "stablelm": fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2) partialOffload = max( 4*batch*(vocab+2*embedding), fullOffload, ) case "deepseek2": fullOffload = max( 4*batch*(3*embedding+vocab), 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV), ) partialOffload = max( 4*batch*(3*embedding+vocab)+embedding*vocab*105/128, 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16, ) case "chatglm": fullOffload = 4 * batch * (embedding + vocab) partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128 if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok { fullOffload = max( fullOffload, 4*batch*(2+ 2*embedding+ context+ context*heads+ embeddingHeadsK*heads+ qkvBias.Shape[0]), ) partialOffload = max( partialOffload, 4*batch*(1+ 2*embedding+ embeddingHeadsK*heads+ context+ context*heads)+ 4*embeddingHeadsK*context+ 4*context*embeddingHeadsK+ 4*qkvBias.Shape[0], ) } } return } func (llm GGML) VisionGraphSize() (weights, graphSize uint64) { if llm.KV().Uint("vision.block_count") == 0 { return } for name, layer := range llm.Tensors().GroupLayers() { if name == "v" || strings.HasPrefix(name, "v.") { for _, tensor := range layer { weights += tensor.Size() } } } imageSize := uint64(llm.KV().Uint("vision.image_size")) patchSize := uint64(llm.KV().Uint("vision.patch_size")) if patchSize == 0 { slog.Warn("unknown patch size for vision model") return } numChannels := uint64(llm.KV().Uint("vision.num_channels")) numPatches := (imageSize / patchSize) * (imageSize / patchSize) if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok { numPatches++ } headCount := uint64(llm.KV().Uint("vision.attention.head_count")) embeddingLength := uint64(llm.KV().Uint("vision.embedding_length")) switch llm.KV().Architecture() { case "mllama": numPaddedPatches := numPatches + 8 - (numPatches%8)%8 maxNumTiles := uint64(llm.KV().Uint("vision.max_num_tiles")) graphSize = 4 * (8 + imageSize*imageSize*numChannels*maxNumTiles + embeddingLength*numPatches*maxNumTiles + 9*embeddingLength*numPaddedPatches*maxNumTiles + numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount) case "gemma3": graphSize = 4 * (imageSize*imageSize*numChannels + embeddingLength*patchSize + numPatches*numPatches*headCount) } return weights, graphSize } // SupportsKVCacheType checks if the requested cache type is supported func (f GGML) SupportsKVCacheType(cacheType string) bool { return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType) } // SupportsFlashAttention checks if the model supports flash attention func (f GGML) SupportsFlashAttention() bool { _, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())] if isEmbedding { return false } // Check head counts match and are non-zero headCountK := f.KV().EmbeddingHeadCountK() headCountV := f.KV().EmbeddingHeadCountV() return headCountK != 0 && headCountV != 0 && headCountK == headCountV } // kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type func kvCacheBytesPerElement(cacheType string) float64 { switch cacheType { case "q8_0": return 1 // 1/2 of fp16 case "q4_0": return 0.5 // 1/4 of fp16 default: return 2 // f16 (default) } }