#pragma once #include "llama.h" #include "llama-io.h" #include "llama-memory.h" #include "ggml-cpp.h" #include #include #include struct llama_cparams; struct llama_hparams; struct llama_ubatch; struct llama_kv_cache : public llama_memory_i { using llama_memory_i::llama_memory_i; virtual void restore() = 0; // call if batch processing fails - restores the cache state virtual void commit() = 0; // call after successful batch processing - clears any pending state virtual int32_t get_n_tokens() const = 0; virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache virtual bool get_can_shift() const = 0; bool get_can_edit() const override { return get_can_shift(); } }; struct llama_kv_cache_guard { llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {} ~llama_kv_cache_guard() { kv->restore(); } void commit() { kv->commit(); } private: llama_kv_cache * kv; }; // block of KV slots to move when defragging struct llama_kv_defrag_move { uint32_t src; uint32_t dst; uint32_t len; }; struct llama_kv_cell { llama_pos pos = -1; llama_pos delta = 0; int32_t src = -1; // used by recurrent state models to copy states int32_t tail = -1; std::set seq_id; bool has_seq_id(const llama_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } bool is_empty() const { return seq_id.empty(); } bool is_same_seq(const llama_kv_cell & other) const { return seq_id == other.seq_id; } }; // ring-buffer of cached KV data // TODO: pimpl // TODO: add notion of max sequences class llama_kv_cache_unified : public llama_kv_cache { public: // can be used to query data from the model if needed struct callbacks { std::function get_rope_factors; }; llama_kv_cache_unified( const llama_hparams & hparams, callbacks cbs); virtual ~llama_kv_cache_unified() = default; // TODO: become constructor bool init( const llama_model & model, // TODO: do not reference the model const llama_cparams & cparams, ggml_type type_k, ggml_type type_v, uint32_t kv_size, bool offload); int32_t get_n_tokens() const override; int32_t get_used_cells() const override; size_t total_size() const; // TODO: better data structures to reduce the cost of this operation llama_pos pos_max() const; void clear() override; void defrag() override; virtual void restore() override; virtual void commit() override; bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; void seq_keep(llama_seq_id seq_id) override; void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override; void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; llama_pos seq_pos_max(llama_seq_id seq_id) const override; bool get_can_shift() const override; // find an empty slot of size "n_tokens" in the cache // updates the cache head // Note: On success, it's important that cache.head points // to the first cell of the slot. bool find_slot(const llama_ubatch & batch); // TODO: maybe not needed uint32_t get_padding(const llama_cparams & cparams) const; // find how many cells are currently in use uint32_t cell_max() const; size_t size_k_bytes() const; size_t size_v_bytes() const; // defrag struct { std::vector moves; } defrag_info; // return true if cells have been moved bool defrag_prepare(int32_t n_max_nodes); // commit/restore cache struct slot_range { uint32_t c0 = 0; // note: these are cell indices, not sequence positions uint32_t c1 = 0; }; // pending cell updates that are not yet committed struct { std::vector ranges; } pending; // state write/load void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const; void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1); // members const llama_hparams & hparams; callbacks cbs; bool has_shift = false; bool do_defrag = false; // TODO: remove this and implement llama_kv_cache_recurrent instead bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token bool v_trans = true; // the value tensor is transposed bool can_shift = false; // Note: The value of head isn't only used to optimize searching // for a free KV slot. llama_decode_impl also uses it, so it // cannot be freely changed after a slot has been allocated. uint32_t head = 0; uint32_t size = 0; uint32_t used = 0; // used cells (i.e. at least one seq_id) // computed before each graph build uint32_t n = 0; std::vector cells; std::vector k_l; // per layer std::vector v_l; private: ggml_type type_k = GGML_TYPE_F16; ggml_type type_v = GGML_TYPE_F16; std::vector ctxs; std::vector bufs; void state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id = -1) const; void state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const; bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); bool state_read_data(llama_io_read_i & io, uint32_t cell_count); }; // TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified //class llama_kv_cache_recurrent : public llama_kv_cache_unified { //public: // using llama_kv_cache_unified::llama_kv_cache_unified; //}; // // kv cache view // llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max); void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv);