package ggml // #cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm // #cgo windows LDFLAGS: -lpthread // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include // #include // #include // #include "ggml.h" // #include "ggml-cpu.h" // #include "ggml-backend.h" import "C" import ( "cmp" "context" "encoding/binary" "errors" "fmt" "io" "log/slog" "maps" "os" "runtime" "slices" "strconv" "strings" "sync" "sync/atomic" "unicode" "unsafe" "github.com/ollama/ollama/format" "github.com/ollama/ollama/fs" fsggml "github.com/ollama/ollama/fs/ggml" "github.com/ollama/ollama/logutil" "github.com/ollama/ollama/ml" ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src" "github.com/ollama/ollama/ml/nn/rope" "golang.org/x/sync/errgroup" ) var ( cpus, accels, gpus []C.ggml_backend_dev_t backends map[C.ggml_backend_dev_t]C.ggml_backend_t ) var initDevices = sync.OnceFunc(func() { ggml.OnceLoad() backends = make(map[C.ggml_backend_dev_t]C.ggml_backend_t) for i := range C.ggml_backend_dev_count() { d := C.ggml_backend_dev_get(i) switch C.ggml_backend_dev_type(d) { case C.GGML_BACKEND_DEVICE_TYPE_CPU: if len(cpus) == 0 { // only the first cpu device should be used cpus = append(cpus, d) } case C.GGML_BACKEND_DEVICE_TYPE_ACCEL: accels = append(accels, d) case C.GGML_BACKEND_DEVICE_TYPE_GPU, C.GGML_BACKEND_DEVICE_TYPE_IGPU: gpus = append(gpus, d) } backends[d] = C.ggml_backend_dev_init(d, nil) } }) type layerDevice struct { d C.ggml_backend_dev_t bt C.ggml_backend_buffer_type_t } type Backend struct { // modelPath is the location of the model data modelPath string meta *fsggml.GGML // allocMemory means that memory should be allocated for tensors and not // just a dry run allocMemory bool // tensorLoadTargets maps from the name of the tensor in the file // to the name that is used by the model definition tensorLoadTargets map[string][]string schedMu sync.Mutex // Only one Compute can run at a time sched C.ggml_backend_sched_t schedBackends []C.ggml_backend_t schedBufts []C.ggml_backend_buffer_type_t tensors map[string]*C.struct_ggml_tensor // input is the backend buffer type used for inputs input C.ggml_backend_buffer_type_t // output is the backend device used for outputs output C.ggml_backend_dev_t // layers is the backend used for repeating layers layers map[int]layerDevice // requiredMemory is the cumulative memory allocations needed by the backend requiredMemory *ml.BackendMemory // btDeviceMemory maps from a buffer type to the memory allocations associated with that device btDeviceMemory map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory flashAttention bool // maxGraphNodes is the maximum allowed number of graph nodes in this scheduler maxGraphNodes int // weightBuffers are the GGML contexts and buffers for allocating weights weightBuffers map[*C.struct_ggml_context]C.ggml_backend_buffer_t } var once sync.Once func New(modelPath string, params ml.BackendParams) (ml.Backend, error) { r, err := os.Open(modelPath) if err != nil { return nil, err } defer r.Close() meta, err := fsggml.Decode(r, -1) if err != nil { return nil, err } once.Do(func() { slog.Info( "", "architecture", meta.KV().Architecture(), "file_type", meta.KV().FileType(), "name", meta.KV().String("general.name"), "description", meta.KV().String("general.description"), "num_tensors", len(meta.Tensors().Items()), "num_key_values", len(meta.KV()), ) }) initDevices() var requiredMemory ml.BackendMemory btDeviceMemory := make(map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory) type deviceBufferType struct { d C.ggml_backend_dev_t bts []C.ggml_backend_buffer_type_t } blocks := int(meta.KV().BlockCount()) // create list of buffer types for the cpu cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)} for _, d := range append(accels, append(gpus, cpus...)...) { switch C.ggml_backend_dev_type(d) { case C.GGML_BACKEND_DEVICE_TYPE_CPU, C.GGML_BACKEND_DEVICE_TYPE_ACCEL: bt := C.ggml_backend_dev_buffer_type(d) cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, bt) btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU } } requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d)) var props C.struct_ggml_backend_dev_props C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props) requiredMemory.CPU.ID = C.GoString(props.id) requiredMemory.CPU.Library = C.GoString(props.library) requiredMemory.CPU.Weights = make([]uint64, blocks+1) requiredMemory.CPU.Cache = make([]uint64, blocks+1) // create list of buffer types for each gpu var gpuDeviceBufferTypes []deviceBufferType requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus)) for i, d := range gpus { bt := C.ggml_backend_dev_buffer_type(d) gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{ d: d, bts: append([]C.ggml_backend_buffer_type_t{bt}, cpuDeviceBufferType.bts...), }) btDeviceMemory[bt] = &requiredMemory.GPUs[i] requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d)) var props C.struct_ggml_backend_dev_props C.ggml_backend_dev_get_props(d, &props) requiredMemory.GPUs[i].ID = C.GoString(props.id) requiredMemory.GPUs[i].Library = C.GoString(props.library) requiredMemory.GPUs[i].Weights = make([]uint64, blocks+1) requiredMemory.GPUs[i].Cache = make([]uint64, blocks+1) } // inputs always use cpu input := cpuDeviceBufferType assignLayer := func(layer int) deviceBufferType { for _, p := range params.GPULayers { for _, l := range p.Layers { if l == layer { for i := range requiredMemory.GPUs { if requiredMemory.GPUs[i].DeviceID == p.DeviceID { return gpuDeviceBufferTypes[i] } } return cpuDeviceBufferType } } } return cpuDeviceBufferType } // repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1) layers := make([]deviceBufferType, blocks) for i := range layers { layers[i] = assignLayer(i) } // outputs are assigned iff allowed by splits and configured number of gpu layers output := assignLayer(blocks) maxTensors := len(meta.Tensors().Items()) maxTensors += 1 // each layer has at most 2 extra tensors for rope operations maxTensors += blocks * 2 type tensor struct { source *fsggml.Tensor target string } // some tensors are mapped to different names so keep a list targets := make(map[string][]string) // contexts are shared by tensors of the same buffer type ctxs := make(map[C.ggml_backend_buffer_type_t]*C.struct_ggml_context) createTensor := func(t tensor, bts []C.ggml_backend_buffer_type_t, layer int) *C.struct_ggml_tensor { for _, bt := range bts { if _, ok := ctxs[bt]; !ok { ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{ mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors), no_alloc: true, }) } targets[t.source.Name] = append(targets[t.source.Name], t.target) name := t.source.Name if t.target != "" { name = t.target } cname := C.CString(name) defer C.free(unsafe.Pointer(cname)) if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil { return tt } kind := t.source.Kind if t.source.Kind == 4 { // transform raw mxfp4 stream to ggml mxfp4 format kind = 39 } else if t.source.Kind == uint32(fsggml.TensorTypeBF16) && strings.HasSuffix(t.source.Name, "_exps.bias") { // transform "_exps.bias" from bf16 to fp32; add_ids only supports fp32 tensors kind = uint32(fsggml.TensorTypeF32) } tt := C.ggml_new_tensor(ctxs[bt], kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0]))) C.ggml_set_name(tt, cname) logutil.Trace("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt))) size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt)) if layer == -1 { requiredMemory.InputWeights += uint64(size) } else { btDeviceMemory[bt].Weights[layer] += uint64(size) } //nolint:staticcheck // TODO: check if buffer type supports this tensor return tt } return nil } contains := func(s string, parts ...string) bool { split := strings.Split(s, ".") for _, part := range parts { if slices.Contains(split, part) { return true } } return false } for _, t := range meta.Tensors().Items() { switch { case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"): createTensor(tensor{source: t}, input.bts, -1) if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" { createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks) } case contains(t.Name, "cls", "output", "output_norm", "altup_proj", "altup_unembd_proj", "per_layer_token_embd", "per_layer_model_proj", "per_layer_proj_norm"): createTensor(tensor{source: t}, output.bts, blocks) case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."): // TODO: assign vision tensors to the gpu if possible createTensor(tensor{source: t}, output.bts, blocks) case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"): // these tensors should be repeated per layer for i, layer := range layers { createTensor(tensor{ source: t, target: "blk." + strconv.Itoa(i) + "." + t.Name, }, layer.bts, i) } default: layerIndex := -1 if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 { if i, err := strconv.Atoi(fields[0]); err == nil { layerIndex = i } } if layerIndex >= 0 { createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex) } else { // load all other tensors on the cpu createTensor(tensor{source: t}, input.bts, -1) } } } // map tensor names to tensors for easy lookup later tensors := make(map[string]*C.struct_ggml_tensor) for _, c := range ctxs { for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) { tensors[C.GoString(C.ggml_get_name(t))] = t } } // map devices to backend buffer types so new tensors can be assigned to the correct device deviceBufferTypes := make(map[C.ggml_backend_dev_t]C.ggml_backend_buffer_type_t) // create backends and buffer types used for the compute graph scheduler var schedBackends []C.ggml_backend_t var schedBufts []C.ggml_backend_buffer_type_t for _, d := range append(gpus, append(accels, cpus...)...) { b := backends[d] bt := C.ggml_backend_get_default_buffer_type(b) // Always include CPU as a fallback but otherwise, just use the devices where we assigned layers if !slices.Contains(cpuDeviceBufferType.bts, bt) { if c, ok := ctxs[bt]; !ok || C.ggml_get_first_tensor(c) == nil { continue } } deviceBufferTypes[d] = bt schedBackends = append(schedBackends, b) schedBufts = append(schedBufts, bt) if C.ggml_backend_is_cpu(b) { // set number of threads for cpu backend C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads))) } } maxGraphNodes := max(8192, len(meta.Tensors().Items())*5) sched := C.ggml_backend_sched_new_ext( (*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])), (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])), C.int(len(schedBackends)), C.size_t(maxGraphNodes), C._Bool(false), C._Bool(true), C._Bool(params.AllocMemory), ) // allocate buffers for each context bbs := make(map[*C.struct_ggml_context]C.ggml_backend_buffer_t, len(ctxs)) for bt, c := range ctxs { if C.ggml_get_first_tensor(c) == nil { continue } b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt) if b == nil { for _, b := range bbs { C.ggml_backend_buffer_free(b) } for _, ctx := range ctxs { C.ggml_free(ctx) } panic(ml.ErrNoMem{BackendMemory: requiredMemory}) } C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS) bbs[c] = b } for bs := range maps.Values(bbs) { logutil.Trace("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs)))) } return &Backend{ modelPath: modelPath, allocMemory: params.AllocMemory, flashAttention: params.FlashAttention, meta: meta, tensorLoadTargets: targets, tensors: tensors, sched: sched, schedBackends: schedBackends, schedBufts: schedBufts, input: deviceBufferTypes[input.d], output: output.d, layers: func() map[int]layerDevice { m := make(map[int]layerDevice) for i, layer := range layers { m[i] = layerDevice{ d: layer.d, bt: deviceBufferTypes[layer.d], } } return m }(), requiredMemory: &requiredMemory, btDeviceMemory: btDeviceMemory, maxGraphNodes: maxGraphNodes, weightBuffers: bbs, }, nil } func init() { ml.RegisterBackend("ggml", New) } func (b *Backend) Close() { if b == nil { return } for ctx, b := range b.weightBuffers { C.ggml_backend_buffer_free(b) C.ggml_free(ctx) } C.ggml_backend_sched_free(b.sched) } func (b *Backend) Load(ctx context.Context, progress func(float32)) error { if !b.allocMemory { return errors.New("cannot load model without memory allocation") } // Mimic llama runner logs summarizing layers and memory gpuLayers := 0 for layer := range maps.Values(b.layers) { switch C.ggml_backend_dev_type(layer.d) { case C.GGML_BACKEND_DEVICE_TYPE_GPU, C.GGML_BACKEND_DEVICE_TYPE_IGPU: gpuLayers++ } } slog.Info(fmt.Sprintf("offloading %d repeating layers to GPU", gpuLayers)) switch C.ggml_backend_dev_type(b.output) { case C.GGML_BACKEND_DEVICE_TYPE_CPU: slog.Info("offloading output layer to CPU") case C.GGML_BACKEND_DEVICE_TYPE_GPU, C.GGML_BACKEND_DEVICE_TYPE_IGPU: slog.Info("offloading output layer to GPU") gpuLayers++ case C.GGML_BACKEND_DEVICE_TYPE_ACCEL: slog.Info("offloading output layer to ACCEL") } slog.Info(fmt.Sprintf("offloaded %d/%d layers to GPU", gpuLayers, len(b.layers)+1)) var doneBytes atomic.Uint64 totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset g, ctx := errgroup.WithContext(ctx) g.SetLimit(runtime.GOMAXPROCS(0)) for _, t := range b.meta.Tensors().Items() { t := t g.Go(func() error { tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name]))) for i := range tts { target := b.tensorLoadTargets[t.Name][i] if target == "" { target = t.Name } tt, ok := b.tensors[target] if !ok { return fmt.Errorf("unassigned tensor: %s", t.Name) } tts[i] = tt } // Create a new FD for each goroutine so that each FD is read sequentially, rather than // seeking around within an FD shared between all goroutines. file, err := os.Open(b.modelPath) if err != nil { slog.Warn("file open error", "file", b.modelPath, "error", err) return err } defer file.Close() sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size())) if t.Kind == 4 && tts[0]._type == 39 { // source is mxfp4, target is ggml mxfp4 const BS = 17 // MXFP4 block size bts := make([]byte, 8*BS*format.KibiByte) // ~128k block aligned var s uint64 var tmp [16]byte for s < t.Size() { // Stop if either the parent context has been canceled or if any of the other tensors returned an error if err := ctx.Err(); err != nil { return err } n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))]) if err != nil { slog.Warn("file read error", "file", b.modelPath, "error", err) return err } for j := range n / BS { for i := 1; i < 9; i++ { // transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc a, b := bts[j*BS+i], bts[j*BS+i+8] tmp[2*(i-1)] = (a & 0x0F) | (b << 4) tmp[2*(i-1)+1] = (a >> 4) | (b & 0xF0) } copy(bts[j*BS+1:j*BS+17], tmp[:]) } for _, tt := range tts { C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n)) } s += uint64(n) if progress != nil { done := doneBytes.Add(uint64(n)) progress(float32(done) / float32(totalBytes)) } } return nil } else if strings.HasSuffix(t.Name, "_exps.bias") && t.Kind == 30 && tts[0]._type == 0 { // source is bf16, target is ggml fp32 // data is bf16 but we need to convert to fp32 bts := make([]byte, 128*format.KibiByte) var e uint64 for e < t.Elements() { // Stop if either the parent context has been canceled or if any of the other tensors returned an error if err := ctx.Err(); err != nil { return err } n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Elements()-e)*2)]) if err != nil { slog.Warn("file read error", "file", b.modelPath, "error", err) return err } fp32 := ConvertToF32(bts, uint32(fsggml.TensorTypeBF16), uint64(n/2)) for _, tt := range tts { C.ggml_backend_tensor_set(tt, unsafe.Pointer(&fp32[0]), C.size_t(e*4), C.size_t(n*2)) } e += uint64(n / 2) if progress != nil { done := doneBytes.Add(uint64(n)) progress(float32(done) / float32(totalBytes)) } } return nil } bts := make([]byte, 128*format.KibiByte) var s uint64 for s < t.Size() { // Stop if either the parent context has been canceled or if any of the other tensors returned an error if err := ctx.Err(); err != nil { return err } n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))]) if err != nil { slog.Warn("file read error", "file", b.modelPath, "error", err) return err } for _, tt := range tts { C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n)) } s += uint64(n) if progress != nil { done := doneBytes.Add(uint64(n)) progress(float32(done) / float32(totalBytes)) } } return nil }) } // Cleanup any backend state from devices that we didn't end up using nextDevice: for _, d := range append(gpus, append(accels, cpus...)...) { for _, backend := range b.schedBackends { if d == C.ggml_backend_get_device(backend) { continue nextDevice } } C.ggml_backend_dev_reset(d) } if err := g.Wait(); err != nil { return err } return nil } func (b *Backend) BackendMemory() ml.BackendMemory { return *b.requiredMemory } func (b *Backend) Config() fs.Config { return b.meta.KV() } func (b *Backend) Get(name string) ml.Tensor { if t, ok := b.tensors[name]; ok { return &Tensor{b: b, t: t} } return nil } func (b *Backend) NewContext() ml.Context { return b.NewContextSize(b.maxGraphNodes) } func (b *Backend) NewContextSize(n int) ml.Context { if n > b.maxGraphNodes { panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes)) } var allocatedBuffers []C.ggml_backend_buffer_t return &Context{ b: b, maxGraphNodes: n, ctx: C.ggml_init(C.struct_ggml_init_params{ mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false), no_alloc: true, }), allocatedBuffers: &allocatedBuffers, layer: -1, } } func (b *Backend) CacheConfig() ml.CacheConfig { if b.flashAttention { return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD} } else { return ml.CacheConfig{CachePadding: 32, PermutedV: true} } } func (b *Backend) BackendDevices() []ml.DeviceInfo { deviceInfos := []ml.DeviceInfo{} for _, dev := range gpus { // If we have a model loaded, and it's only loaded on a subset of the devices // skip idle/unused devices to avoid initializing them and causing VRAM allocations if b.allocMemory { idleDev := true for _, backend := range b.schedBackends { if dev == C.ggml_backend_get_device(backend) { idleDev = false break } } if idleDev { slog.Debug("skipping unused backend device", "description", C.GoString(C.ggml_backend_dev_description(dev))) continue } } info := ml.DeviceInfo{} props := C.struct_ggml_backend_dev_props{} C.ggml_backend_dev_get_props(dev, &props) info.Name = C.GoString(props.name) info.Description = C.GoString(props.description) info.ID = C.GoString(props.id) info.Library = C.GoString(props.library) info.ComputeMajor = (int)(props.compute_major) info.ComputeMinor = (int)(props.compute_minor) info.DriverMajor = (int)(props.driver_major) info.DriverMinor = (int)(props.driver_minor) info.Integrated = props.integrated != 0 if props.library != nil { info.Library = C.GoString(props.library) } if props.device_id != nil { info.PCIID = C.GoString(props.device_id) } info.LibraryPath = ggml.LibPaths() if props.numeric_id != nil { info.FilteredID = C.GoString(props.numeric_id) } C.ggml_backend_dev_memory(dev, &props.memory_free, &props.memory_total) info.TotalMemory = (uint64)(props.memory_total) info.FreeMemory = (uint64)(props.memory_free) deviceInfos = append(deviceInfos, info) } return deviceInfos } type Context struct { b *Backend ctx *C.struct_ggml_context graph *C.struct_ggml_cgraph // batchSize is a hint to optimize processing batchSize int // buft is the buffer type used for new tensors buft C.ggml_backend_buffer_type_t // allocatedBuffers are buffers for tensors that we have allocated in this context // so that we can free them when we close the context allocatedBuffers *[]C.ggml_backend_buffer_t // maxGraphNodes is the maximum allowed number of graph nodes in this context maxGraphNodes int // layer is the graph layer that this context is allocating for - assumed to be cache layer int } func (c *Context) Input() ml.Context { if c.b.input != nil { return &Context{ b: c.b, ctx: c.ctx, buft: c.b.input, allocatedBuffers: c.allocatedBuffers, maxGraphNodes: c.maxGraphNodes, layer: -1, } } return c } func (c *Context) Layer(i int) ml.Context { if layer, ok := c.b.layers[i]; ok { return &Context{ b: c.b, ctx: c.ctx, buft: layer.bt, allocatedBuffers: c.allocatedBuffers, maxGraphNodes: c.maxGraphNodes, layer: i, } } return c } func (c *Context) Forward(tensors ...ml.Tensor) ml.Context { if c.graph == nil { c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false) } for _, tensor := range tensors { C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t) } return c } func (c *Context) SetBatchSize(batchSize int) { c.batchSize = batchSize } func (c *Context) Compute(tensors ...ml.Tensor) { c.ComputeWithNotify(nil, tensors...) } func (c *Context) ComputeWithNotify(cb func(), tensors ...ml.Tensor) { c.b.schedMu.Lock() defer c.b.schedMu.Unlock() if cb != nil { go cb() } if c.batchSize > 0 { C.ggml_backend_sched_set_batch_size(c.b.sched, C.int(c.batchSize)) } if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS { panic(fmt.Errorf("error computing ggml graph: %v", status)) } C.ggml_backend_sched_reset(c.b.sched) needSync := true sync := func() { if needSync { C.ggml_backend_sched_synchronize(c.b.sched) needSync = false } } for _, t := range tensors { if C.ggml_nbytes(t.(*Tensor).t) > 0 { t.(*Tensor).sync = sync } } } func (c *Context) Reserve() { if c.batchSize > 0 { C.ggml_backend_sched_set_batch_size(c.b.sched, C.int(c.batchSize)) } reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph) slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched)) // Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations for _, bt := range c.b.schedBufts { c.b.btDeviceMemory[bt].Graph = 0 } for i := range c.b.schedBackends { bufferSize := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i]) c.b.btDeviceMemory[c.b.schedBufts[i]].Graph += uint64(bufferSize) logutil.Trace("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])), "size", format.HumanBytes2(uint64(bufferSize))) } if !reserved { panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory}) } } func (c *Context) MaxGraphNodes() int { return c.maxGraphNodes } func shapeToGGML(shape []int) *C.int64_t { sh := make([]C.int64_t, len(shape)) for i, s := range shape { sh[i] = C.int64_t(s) } return &sh[0] } func pad(length, pad C.size_t) C.size_t { return ((length + pad - 1) / pad) * pad } func (c *Context) newTensor(dtype ml.DType, shape []int) *Tensor { if c.buft == nil { panic("set Input or Layer before creating tensors") } cdtype := ggmlDType(dtype) if len(shape) < 1 || shape[0] == 0 { var shape C.int64_t = 0 return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)} } else if len(shape) > 4 { panic("unsupported number of dimensions") } for _, dim := range shape { if dim < 1 { panic("invalid shape") } } t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape)) size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft)) b := C.ggml_backend_buft_alloc_buffer(c.buft, size) if c.layer >= 0 { c.b.btDeviceMemory[c.buft].Cache[c.layer] += uint64(size) } if b == nil { panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory}) } *c.allocatedBuffers = append(*c.allocatedBuffers, b) C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b)) return &Tensor{b: c.b, t: t} } func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor { return c.newTensor(dtype, shape) } func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor { t := c.newTensor(dtype, shape) if c.b.allocMemory { C.ggml_set_zero(t.t) } return t } func checkShape[S ~[]E, E any](s S, shape ...int) { n := len(s) if n == 0 { return } for _, v := range shape { n /= v } if n != 1 { panic(fmt.Errorf("invalid shape: %v", shape)) } } func (c Context) FromBytes(dtype ml.DType, s []uint8, shape ...int) ml.Tensor { // Unchecked to handle quantized types t := c.newTensor(dtype, shape) if c.b.allocMemory { t.FromBytes(s) } return t } func (c *Context) FromFloats(s []float32, shape ...int) ml.Tensor { checkShape(s, shape...) t := c.newTensor(ml.DTypeF32, shape) if c.b.allocMemory { t.FromFloats(s) } return t } func (c *Context) FromInts(s []int32, shape ...int) ml.Tensor { checkShape(s, shape...) t := c.newTensor(ml.DTypeI32, shape) if c.b.allocMemory { t.FromInts(s) } return t } func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor { switch dtype { case ml.DTypeF32: // ggml_arange creates a float32 tensor return &Tensor{ b: c.b, t: C.ggml_arange(c.ctx, C.float(start), C.float(stop), C.float(step)), } case ml.DTypeI32: // ggml_cast does not support float32 to int32 conversion arange := make([]int32, 0, int((stop-start)/step)) for i := start; i < stop; i += step { arange = append(arange, int32(i)) } return c.Input().FromInts(arange, len(arange)) default: panic("unsupported dtype for arange") } } func (c *Context) Close() { if c != nil { for _, b := range *c.allocatedBuffers { C.ggml_backend_buffer_free(b) } *c.allocatedBuffers = nil C.ggml_free(c.ctx) } } type Tensor struct { b *Backend t *C.struct_ggml_tensor sync func() } func (t *Tensor) LogValue() slog.Value { return slog.GroupValue( slog.String("name", C.GoString(C.ggml_get_name(t.t))), slog.String("type", C.GoString(C.ggml_type_name(t.t._type))), slog.Any("shape", t.Shape()), ) } func (t *Tensor) Dim(n int) int { return int(t.t.ne[n]) } func (t *Tensor) Stride(n int) int { return int(t.t.nb[n]) } func (t *Tensor) Shape() []int { shape := make([]int, C.ggml_n_dims(t.t)) for i := range shape { shape[i] = t.Dim(i) } return shape } func (t *Tensor) Bytes() (data []byte) { if t.sync != nil { data = make([]byte, C.ggml_nbytes(t.t)) t.sync() C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t)) } return } func (t *Tensor) Floats() (data []float32) { if t.sync != nil { data = make([]float32, C.ggml_nelements(t.t)) t.sync() C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t)) } return } func tensorSet[S ~[]E, E byte | float32 | int32](t *Tensor, s S) { if len(s) == 0 { return } if int(C.ggml_nbytes(t.t)) != len(s)*binary.Size(s[0]) { panic("data size does not match tensor size") } C.ggml_backend_tensor_set(t.t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.t)) } func (t *Tensor) FromBytes(s []byte) { tensorSet(t, s) } func (t *Tensor) FromFloats(s []float32) { tensorSet(t, s) } func (t *Tensor) FromInts(s []int32) { tensorSet(t, s) } func (t *Tensor) DType() ml.DType { switch t.t._type { case C.GGML_TYPE_F32: return ml.DTypeF32 case C.GGML_TYPE_F16: return ml.DTypeF16 case C.GGML_TYPE_Q8_0: return ml.DTypeQ80 case C.GGML_TYPE_Q4_0: return ml.DTypeQ40 case C.GGML_TYPE_I32: return ml.DTypeI32 case C.GGML_TYPE_MXFP4: return ml.DTypeMXFP4 default: return ml.DTypeOther } } func ggmlDType(dtype ml.DType) uint32 { switch dtype { case ml.DTypeF32: return C.GGML_TYPE_F32 case ml.DTypeF16: return C.GGML_TYPE_F16 case ml.DTypeQ80: return C.GGML_TYPE_Q8_0 case ml.DTypeQ40: return C.GGML_TYPE_Q4_0 case ml.DTypeI32: return C.GGML_TYPE_I32 case ml.DTypeMXFP4: return C.GGML_TYPE_MXFP4 default: panic("unsupported dtype") } } func (t *Tensor) Cast(ctx ml.Context, dtype ml.DType) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_cast(ctx.(*Context).ctx, t.t, ggmlDType(dtype)), } } func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Sub(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_sub(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor { if dim < 0 || dim >= C.GGML_MAX_DIMS { panic("invalid dimension") } shape := make([]C.int64_t, C.GGML_MAX_DIMS) for i := range C.GGML_MAX_DIMS { if i == dim { shape[i] = C.int64_t(t.Dim(i) * n) } else { shape[i] = C.int64_t(t.Dim(i)) } } tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape)) return &Tensor{ b: t.b, t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl), } } func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor { if len(s) > 0 { return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim) } return t } func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)), } } func (t *Tensor) Contiguous(ctx ml.Context, shape ...int) ml.Tensor { if slices.Contains(shape, -1) { inferShape(t, shape) } switch len(shape) { case 0: return &Tensor{ b: t.b, t: C.ggml_cont(ctx.(*Context).ctx, t.t), } case 1: return &Tensor{ b: t.b, t: C.ggml_cont_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])), } case 2: return &Tensor{ b: t.b, t: C.ggml_cont_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])), } case 3: return &Tensor{ b: t.b, t: C.ggml_cont_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])), } case 4: return &Tensor{ b: t.b, t: C.ggml_cont_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])), } default: panic("unsupported number of dimensions") } } func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } // Mulmat performs matrix multiplication between two tensors. // If t has shape [m, p, ...] and t2 has shape [m, n, ...], // Mulmat returns a new Tensor with shape [p, n, ...]. // // Note: this is similar to matmul(t2, t.tranpose(-1, -2)) in other libraries. func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor { mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t) C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32) return &Tensor{ b: t.b, t: mul, } } func (t *Tensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_mul_mat_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t), } } func (t *Tensor) AddID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_add_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t), } } func (t *Tensor) L2Norm(ctx ml.Context, eps float32) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_l2_norm(ctx.(*Context).ctx, t.t, C.float(eps)), } } func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor { tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps)) if w != nil { tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t) if b != nil { tt = C.ggml_add(ctx.(*Context).ctx, tt, b.(*Tensor).t) } } return &Tensor{b: t.b, t: tt} } func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor { tt := C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps)) if w != nil { tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t) } return &Tensor{b: t.b, t: tt} } func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor { if len(shape) != 4 { panic("expected 4 dimensions") } else if shape[3] != 0 { panic("cuda does not support 4d tensors") } return &Tensor{ b: t.b, t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])), } } // Permute permutes t according to order. Permute panics if the number of dimensions // in order does not match the number of dimensions in t. func (t *Tensor) Permute(ctx ml.Context, order ...int) ml.Tensor { if len(order) != len(t.Shape()) && len(order) != 4 { panic("invalid number of dimensions for permute") } // ggml_permute requires 4 dimensions so fill in the rest for i := len(order); i < 4; i++ { order = append(order, i) } return &Tensor{ b: t.b, t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(order[0]), C.int(order[1]), C.int(order[2]), C.int(order[3])), } } func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } // inferShape updates shape in place to automatically set a single -1 dimesion // based on the input tensor and the other dimensions func inferShape(t *Tensor, shape []int) { total := 1 for _, dim := range t.Shape() { total *= dim } dim := -1 for i := range shape { switch shape[i] { case -1: if dim != -1 { panic("only one dimension can be inferred") } dim = i case 0: panic("dimension cannot be zero") default: if total%shape[i] != 0 { panic("cannot infer dimension") } total /= shape[i] } } if dim != -1 { shape[dim] = total } } func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor { if slices.Contains(shape, -1) { inferShape(t, shape) } switch len(shape) { case 1: return &Tensor{ b: t.b, t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])), } case 2: return &Tensor{ b: t.b, t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])), } case 3: return &Tensor{ b: t.b, t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])), } case 4: return &Tensor{ b: t.b, t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])), } default: panic("unsupported number of dimensions") } } func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)), } } func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_soft_max(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Sin(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_sin(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Cos(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_cos(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_sigmoid_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor { switch len(shape) { case 1: return &Tensor{ b: t.b, t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)), } case 3: return &Tensor{ b: t.b, t: C.ggml_view_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[2]), C.size_t(shape[1]), C.size_t(offset)), } case 5: return &Tensor{ b: t.b, t: C.ggml_view_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(offset)), } case 7: return &Tensor{ b: t.b, t: C.ggml_view_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]), C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]), C.size_t(offset)), } default: panic("unsupported number of dimensions") } } func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor { // Default options opts := rope.Options{Factors: &Tensor{}} // Apply any provided options for _, option := range options { option(&opts) } dequant := t.t if C.ggml_is_quantized(t.t._type) { dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32) } var tt *C.struct_ggml_tensor if len(opts.MRoPE.Sections) > 0 { mropeSections := make([]C.int32_t, 4) for i, section := range opts.MRoPE.Sections { mropeSections[i] = C.int32_t(section) } tt = C.ggml_rope_multi( ctx.(*Context).ctx, dequant, positions.(*Tensor).t, opts.Factors.(*Tensor).t, C.int(ropeDim), unsafe.SliceData(mropeSections), C.int(opts.Type), cmp.Or(C.int(opts.YaRN.OriginalContextLength), 128<<10), C.float(ropeBase), C.float(ropeScale), C.float(opts.YaRN.ExtrapolationFactor), cmp.Or(C.float(opts.YaRN.AttentionFactor), 1), cmp.Or(C.float(opts.YaRN.BetaFast), 32), cmp.Or(C.float(opts.YaRN.BetaSlow), 1), ) } else { tt = C.ggml_rope_ext( ctx.(*Context).ctx, dequant, positions.(*Tensor).t, opts.Factors.(*Tensor).t, C.int(ropeDim), C.int(opts.Type), cmp.Or(C.int(opts.YaRN.OriginalContextLength), 128<<10), C.float(ropeBase), C.float(ropeScale), C.float(opts.YaRN.ExtrapolationFactor), cmp.Or(C.float(opts.YaRN.AttentionFactor), 1), cmp.Or(C.float(opts.YaRN.BetaFast), 32), cmp.Or(C.float(opts.YaRN.BetaSlow), 1), ) } return &Tensor{b: t.b, t: tt} } func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32), } } func (t *Tensor) GELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor { if len(t2) > 0 { return &Tensor{ b: t.b, t: C.ggml_geglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t), } } return &Tensor{ b: t.b, t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) SILU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor { if len(t2) > 0 { return &Tensor{ b: t.b, t: C.ggml_swiglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t), } } return &Tensor{ b: t.b, t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) RELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor { if len(t2) > 0 { return &Tensor{ b: t.b, t: C.ggml_reglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t), } } return &Tensor{ b: t.b, t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) SILUAlphaLimit(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_swiglu_oai(ctx.(*Context).ctx, t.t, up.(*Tensor).t, C.float(alpha), C.float(limit)), } } func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)), } } func (t *Tensor) Conv3D(ctx ml.Context, t2 ml.Tensor, c, s0, s1, s2, p0, p1, p2, d0, d1, d2 int) ml.Tensor { var tt ml.Tensor = &Tensor{ b: t.b, t: C.ggml_conv_3d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int64_t(c), C.int(s0), C.int(s1), C.int(s2), C.int(p0), C.int(p1), C.int(p2), C.int(d0), C.int(d1), C.int(d2)), } tt = tt.Reshape(ctx, t.Dim(3)/c, t2.Dim(3)/c) return tt } func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)), } } func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sinks ml.Tensor, scale float64) ml.Tensor { var kqMask *C.struct_ggml_tensor if mask != nil { kqMask = mask.(*Tensor).t } query := t.Permute(ctx, 0, 2, 1, 3) key = key.Permute(ctx, 0, 2, 1, 3) if t.b.flashAttention { value = value.Permute(ctx, 0, 2, 1, 3) kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0) if sinks != nil { C.ggml_flash_attn_ext_add_sinks(kqv, sinks.(*Tensor).t) } C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32) return &Tensor{b: t.b, t: kqv} } else { kq := key.MulmatFullPrec(ctx, query) kq = &Tensor{ b: t.b, t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0), } if sinks != nil { C.ggml_soft_max_add_sinks(kq.(*Tensor).t, sinks.(*Tensor).t) } kqv := value.Mulmat(ctx, kq) return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) } } func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_dup(ctx.(*Context).ctx, t.t), } } func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)), } } func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC), } } func (t *Tensor) Mean(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_mean(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Variance(ctx ml.Context) ml.Tensor { return t.Add(ctx, t.Mean(ctx).Scale(ctx, -1)). Sqr(ctx). SumRows(ctx). Scale(ctx, 1/float64(t.Dim(0))) } func (t *Tensor) Stddev(ctx ml.Context) ml.Tensor { return t.Variance(ctx).Sqrt(ctx) } func (t *Tensor) Sqr(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_sqr(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_sqrt(ctx.(*Context).ctx, t.t), } } // Slice returns a view of the tensor sliced along dim from low to high in step steps. // Slice panics if the dimension is invalid or the slice parameters are out of range. // If dim=0 and step>1, the tensor is a copy rather than a view to ensure proper shape. func (t *Tensor) Slice(ctx ml.Context, dim int, low, high, step int) ml.Tensor { if dim < 0 || dim >= C.GGML_MAX_DIMS { panic("invalid dimension") } else if low < 0 || high > t.Dim(dim) || low >= high || step < 1 { panic("invalid slice parameters") } if dim == 0 && step > 1 { // dim=0,step>1 is a special case so handle it here first return t.View(ctx, low*t.Stride(0), 1, step*t.Stride(0), (high-low+1)/step, t.Stride(1), t.Dim(1), // preserve dim 3 by merging it into dim 2 t.Stride(2), t.Dim(2)*t.Dim(3), ).Contiguous(ctx, (high-low+1)/step, t.Dim(1), t.Dim(2), t.Dim(3)) } args := []int{ low * t.Stride(dim), t.Dim(0), t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3), } if step == 1 { args[dim*2+1] = high - low return t.View(ctx, args[0], args[1:]...) } else { args[dim*2] = step * t.Stride(dim) args[dim*2+1] = (high - low + 1) / step return t.View(ctx, args[0], args[1:]...) } } // Chunk the tensor into chunk sized tensors along dim. Each sub-tensor is a view of // the original. func (t *Tensor) Chunk(ctx ml.Context, dim, chunk int) []ml.Tensor { sections := make([]int, 0, t.Dim(dim)/chunk+1) for rest := t.Dim(dim); rest > 0; rest -= chunk { sections = append(sections, min(chunk, rest)) } return t.ChunkSections(ctx, dim, sections...) } // ChunkSections split the tensor into section sized tensors along dim. Each sub-tensor is a // view of the original. The size of the dim must equal the sum of sections. func (t *Tensor) ChunkSections(ctx ml.Context, dim int, sections ...int) []ml.Tensor { var offset int s := make([]ml.Tensor, len(sections)) for i, section := range sections { s[i] = t.Slice(ctx, dim, offset, offset+section, 1) offset += section } if offset != t.Dim(dim) { panic("sections do not sum to tensor dimension") } return s }