package convert import ( "bytes" "strings" "github.com/ollama/ollama/fs/ggml" ) type qwen25VLModel struct { ModelParameters HiddenSize uint32 `json:"hidden_size"` IntermediateSize uint32 `json:"intermediate_size"` MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` NumAttentionHeads uint32 `json:"num_attention_heads"` HiddenLayers uint32 `json:"num_hidden_layers"` RopeTheta float32 `json:"rope_theta"` NumKeyValueHeads uint32 `json:"num_key_value_heads"` RMSNormEPS float32 `json:"rms_norm_eps"` VisionModel struct { } `json:"vision_config"` } var _ ModelConverter = (*qwen25VLModel)(nil) func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV { kv := q.ModelParameters.KV(t) kv["general.architecture"] = "qwen25vl" kv["qwen25vl.block_count"] = q.HiddenLayers kv["qwen25vl.context_length"] = q.MaxPositionEmbeddings kv["qwen25vl.embedding_length"] = q.HiddenSize kv["qwen25vl.feed_forward_length"] = q.IntermediateSize kv["qwen25vl.attention.head_count"] = q.NumAttentionHeads kv["qwen25vl.attention.head_count_kv"] = q.NumKeyValueHeads kv["qwen25vl.rope.freq_base"] = q.RopeTheta kv["qwen25vl.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS return kv } func (q *qwen25VLModel) Tensors(ts []Tensor) []ggml.Tensor { var out []ggml.Tensor for _, t := range ts { if strings.HasSuffix(t.Name(), "patch_embed.proj.weight") { var buf bytes.Buffer t.WriteTo(&buf) newTensors := splitPatchEmbed(buf, t.Kind(), t.Shape()) out = append(out, newTensors...) } else { out = append(out, ggml.Tensor{ Name: t.Name(), Kind: t.Kind(), Shape: t.Shape(), WriterTo: t, }) } } return out } func (p *qwen25VLModel) Replacements() []string { return []string{ "lm_head", "output", "model.embed_tokens", "token_embd", "model.layers", "blk", "visual.blocks", "v.blk", "input_layernorm", "attn_norm", "self_attn.k_proj", "attn_k", "self_attn.v_proj", "attn_v", "self_attn.q_proj", "attn_q", "self_attn.o_proj", "attn_output", "mlp.down_proj", "ffn_down", "mlp.gate_proj", "ffn_gate", "mlp.up_proj", "ffn_up", "post_attention_layernorm", "ffn_norm", "model.norm", "output_norm", } }