package qwen2 import ( "cmp" "fmt" "math" "strings" "github.com/ollama/ollama/fs" "github.com/ollama/ollama/kvcache" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/ml/nn/fast" "github.com/ollama/ollama/ml/nn/rope" "github.com/ollama/ollama/model" "github.com/ollama/ollama/model/input" ) type Options struct { hiddenSize, numHeads, numKVHeads int headDim, ropeDim int eps, ropeBase, ropeScale float32 } type Attention struct { Query *nn.Linear `gguf:"attn_q"` Key *nn.Linear `gguf:"attn_k"` Value *nn.Linear `gguf:"attn_v"` Output *nn.Linear `gguf:"attn_output"` } func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor { batchSize := hiddenStates.Dim(1) headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads) ropeDim := cmp.Or(opts.ropeDim, headDim) query := attn.Query.Forward(ctx, hiddenStates) query = query.Reshape(ctx, headDim, opts.numHeads, batchSize) key := attn.Key.Forward(ctx, hiddenStates) key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize) value := attn.Value.Forward(ctx, hiddenStates) value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize) query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX()) key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX()) attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache) attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize) return attn.Output.Forward(ctx, attention) } type MLP struct { Gate *nn.Linear `gguf:"ffn_gate"` Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` } func (mlp MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor { hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates)) return mlp.Down.Forward(ctx, hiddenStates) } type DecoderLayer struct { AttentionNorm *nn.RMSNorm `gguf:"attn_norm"` Attention *Attention MLPNorm *nn.RMSNorm `gguf:"ffn_norm"` MLP *MLP } func (d DecoderLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor { residual := hiddenStates hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps) hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts) if outputs != nil { hiddenStates = hiddenStates.Rows(ctx, outputs) residual = residual.Rows(ctx, outputs) } hiddenStates = hiddenStates.Add(ctx, residual) residual = hiddenStates hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps) hiddenStates = d.MLP.Forward(ctx, hiddenStates) return hiddenStates.Add(ctx, residual) } type Model struct { model.Base model.BytePairEncoding TokenEmbedding *nn.Embedding `gguf:"token_embd"` Layers []DecoderLayer `gguf:"blk"` OutputNorm *nn.RMSNorm `gguf:"output_norm"` Output *nn.Linear `gguf:"output,alt:token_embd"` Options } // Forward implements model.Model. func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) { positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions)) hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs) for i, layer := range m.Layers { m.Cache.SetLayer(i) var outputs ml.Tensor if i == len(m.Layers)-1 { outputs = batch.Outputs } hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options) } hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps) hiddenStates = m.Output.Forward(ctx, hiddenStates) return hiddenStates, nil } func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads) return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil } func New(c fs.Config) (model.Model, error) { // This model currently only supports the gpt2 tokenizer if c.String("tokenizer.ggml.model") == "llama" { return nil, fmt.Errorf("unsupported tokenizer: llama") } // detect library/qwen model(s) which are incompatible if strings.HasPrefix(c.String("general.name"), "Qwen2-beta") { return nil, fmt.Errorf("unsupported model: %s", c.String("general.name")) } m := Model{ Layers: make([]DecoderLayer, c.Uint("block_count")), BytePairEncoding: model.NewBytePairEncoding( &model.Vocabulary{ Values: c.Strings("tokenizer.ggml.tokens"), Types: c.Ints("tokenizer.ggml.token_type"), Merges: c.Strings("tokenizer.ggml.merges"), AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true), BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))}, AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false), EOS: append( []int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))}, c.Ints("tokenizer.ggml.eos_token_ids")..., ), }, `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`, ), Options: Options{ hiddenSize: int(c.Uint("embedding_length")), numHeads: int(c.Uint("attention.head_count")), numKVHeads: int(c.Uint("attention.head_count_kv")), headDim: int(c.Uint("attention.key_length")), ropeDim: int(c.Uint("rope.dimension_count")), ropeBase: c.Float("rope.freq_base"), ropeScale: c.Float("rope.scaling.factor", 1), eps: c.Float("attention.layer_norm_rms_epsilon"), }, } m.Cache = kvcache.NewCausalCache(m.Shift) return &m, nil } func init() { model.Register("qwen2", New) }