--- title: Tool calling --- Ollama supports tool calling (also known as function calling) which allows a model to invoke tools and incorporate their results into its replies. ## Calling a single tool Invoke a single tool and include its response in a follow-up request. Also known as "single-shot" tool calling. ```shell curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{ "model": "qwen3", "messages": [{"role": "user", "content": "What's the temperature in New York?"}], "stream": false, "tools": [ { "type": "function", "function": { "name": "get_temperature", "description": "Get the current temperature for a city", "parameters": { "type": "object", "required": ["city"], "properties": { "city": {"type": "string", "description": "The name of the city"} } } } } ] }' ``` **Generate a response with a single tool result** ```shell curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{ "model": "qwen3", "messages": [ {"role": "user", "content": "What's the temperature in New York?"}, { "role": "assistant", "tool_calls": [ { "type": "function", "function": { "index": 0, "name": "get_temperature", "arguments": {"city": "New York"} } } ] }, {"role": "tool", "tool_name": "get_temperature", "content": "22°C"} ], "stream": false }' ``` Install the Ollama Python SDK: ```bash # with pip pip install ollama -U # with uv uv add ollama ``` ```python from ollama import chat def get_temperature(city: str) -> str: """Get the current temperature for a city Args: city: The name of the city Returns: The current temperature for the city """ temperatures = { "New York": "22°C", "London": "15°C", "Tokyo": "18°C", } return temperatures.get(city, "Unknown") messages = [{"role": "user", "content": "What's the temperature in New York?"}] # pass functions directly as tools in the tools list or as a JSON schema response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True) messages.append(response.message) if response.message.tool_calls: # only recommended for models which only return a single tool call call = response.message.tool_calls[0] result = get_temperature(**call.function.arguments) # add the tool result to the messages messages.append({"role": "tool", "tool_name": call.function.name, "content": str(result)}) final_response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True) print(final_response.message.content) ``` Install the Ollama JavaScript library: ```bash # with npm npm i ollama # with bun bun i ollama ``` ```typescript import ollama from 'ollama' function getTemperature(city: string): string { const temperatures: Record = { 'New York': '22°C', 'London': '15°C', 'Tokyo': '18°C', } return temperatures[city] ?? 'Unknown' } const tools = [ { type: 'function', function: { name: 'get_temperature', description: 'Get the current temperature for a city', parameters: { type: 'object', required: ['city'], properties: { city: { type: 'string', description: 'The name of the city' }, }, }, }, }, ] const messages = [{ role: 'user', content: "What's the temperature in New York?" }] const response = await ollama.chat({ model: 'qwen3', messages, tools, think: true, }) messages.push(response.message) if (response.message.tool_calls?.length) { // only recommended for models which only return a single tool call const call = response.message.tool_calls[0] const args = call.function.arguments as { city: string } const result = getTemperature(args.city) // add the tool result to the messages messages.push({ role: 'tool', tool_name: call.function.name, content: result }) // generate the final response const finalResponse = await ollama.chat({ model: 'qwen3', messages, tools, think: true }) console.log(finalResponse.message.content) } ``` ## Parallel tool calling Request multiple tool calls in parallel, then send all tool responses back to the model. ```shell curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{ "model": "qwen3", "messages": [{"role": "user", "content": "What are the current weather conditions and temperature in New York and London?"}], "stream": false, "tools": [ { "type": "function", "function": { "name": "get_temperature", "description": "Get the current temperature for a city", "parameters": { "type": "object", "required": ["city"], "properties": { "city": {"type": "string", "description": "The name of the city"} } } } }, { "type": "function", "function": { "name": "get_conditions", "description": "Get the current weather conditions for a city", "parameters": { "type": "object", "required": ["city"], "properties": { "city": {"type": "string", "description": "The name of the city"} } } } } ] }' ``` **Generate a response with multiple tool results** ```shell curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{ "model": "qwen3", "messages": [ {"role": "user", "content": "What are the current weather conditions and temperature in New York and London?"}, { "role": "assistant", "tool_calls": [ { "type": "function", "function": { "index": 0, "name": "get_temperature", "arguments": {"city": "New York"} } }, { "type": "function", "function": { "index": 1, "name": "get_conditions", "arguments": {"city": "New York"} } }, { "type": "function", "function": { "index": 2, "name": "get_temperature", "arguments": {"city": "London"} } }, { "type": "function", "function": { "index": 3, "name": "get_conditions", "arguments": {"city": "London"} } } ] }, {"role": "tool", "tool_name": "get_temperature", "content": "22°C"}, {"role": "tool", "tool_name": "get_conditions", "content": "Partly cloudy"}, {"role": "tool", "tool_name": "get_temperature", "content": "15°C"}, {"role": "tool", "tool_name": "get_conditions", "content": "Rainy"} ], "stream": false }' ``` ```python from ollama import chat def get_temperature(city: str) -> str: """Get the current temperature for a city Args: city: The name of the city Returns: The current temperature for the city """ temperatures = { "New York": "22°C", "London": "15°C", "Tokyo": "18°C" } return temperatures.get(city, "Unknown") def get_conditions(city: str) -> str: """Get the current weather conditions for a city Args: city: The name of the city Returns: The current weather conditions for the city """ conditions = { "New York": "Partly cloudy", "London": "Rainy", "Tokyo": "Sunny" } return conditions.get(city, "Unknown") messages = [{'role': 'user', 'content': 'What are the current weather conditions and temperature in New York and London?'}] # The python client automatically parses functions as a tool schema so we can pass them directly # Schemas can be passed directly in the tools list as well response = chat(model='qwen3', messages=messages, tools=[get_temperature, get_conditions], think=True) # add the assistant message to the messages messages.append(response.message) if response.message.tool_calls: # process each tool call for call in response.message.tool_calls: # execute the appropriate tool if call.function.name == 'get_temperature': result = get_temperature(**call.function.arguments) elif call.function.name == 'get_conditions': result = get_conditions(**call.function.arguments) else: result = 'Unknown tool' # add the tool result to the messages messages.append({'role': 'tool', 'tool_name': call.function.name, 'content': str(result)}) # generate the final response final_response = chat(model='qwen3', messages=messages, tools=[get_temperature, get_conditions], think=True) print(final_response.message.content) ``` ```typescript import ollama from 'ollama' function getTemperature(city: string): string { const temperatures: { [key: string]: string } = { "New York": "22°C", "London": "15°C", "Tokyo": "18°C" } return temperatures[city] || "Unknown" } function getConditions(city: string): string { const conditions: { [key: string]: string } = { "New York": "Partly cloudy", "London": "Rainy", "Tokyo": "Sunny" } return conditions[city] || "Unknown" } const tools = [ { type: 'function', function: { name: 'get_temperature', description: 'Get the current temperature for a city', parameters: { type: 'object', required: ['city'], properties: { city: { type: 'string', description: 'The name of the city' }, }, }, }, }, { type: 'function', function: { name: 'get_conditions', description: 'Get the current weather conditions for a city', parameters: { type: 'object', required: ['city'], properties: { city: { type: 'string', description: 'The name of the city' }, }, }, }, } ] const messages = [{ role: 'user', content: 'What are the current weather conditions and temperature in New York and London?' }] const response = await ollama.chat({ model: 'qwen3', messages, tools, think: true }) // add the assistant message to the messages messages.push(response.message) if (response.message.tool_calls) { // process each tool call for (const call of response.message.tool_calls) { // execute the appropriate tool let result: string if (call.function.name === 'get_temperature') { const args = call.function.arguments as { city: string } result = getTemperature(args.city) } else if (call.function.name === 'get_conditions') { const args = call.function.arguments as { city: string } result = getConditions(args.city) } else { result = 'Unknown tool' } // add the tool result to the messages messages.push({ role: 'tool', tool_name: call.function.name, content: result }) } // generate the final response const finalResponse = await ollama.chat({ model: 'qwen3', messages, tools, think: true }) console.log(finalResponse.message.content) } ``` ## Multi-turn tool calling (Agent loop) An agent loop allows the model to decide when to invoke tools and incorporate their results into its replies. It also might help to tell the model that it is in a loop and can make multiple tool calls. ```python from ollama import chat, ChatResponse def add(a: int, b: int) -> int: """Add two numbers""" """ Args: a: The first number b: The second number Returns: The sum of the two numbers """ return a + b def multiply(a: int, b: int) -> int: """Multiply two numbers""" """ Args: a: The first number b: The second number Returns: The product of the two numbers """ return a * b available_functions = { 'add': add, 'multiply': multiply, } messages = [{'role': 'user', 'content': 'What is (11434+12341)*412?'}] while True: response: ChatResponse = chat( model='qwen3', messages=messages, tools=[add, multiply], think=True, ) messages.append(response.message) print("Thinking: ", response.message.thinking) print("Content: ", response.message.content) if response.message.tool_calls: for tc in response.message.tool_calls: if tc.function.name in available_functions: print(f"Calling {tc.function.name} with arguments {tc.function.arguments}") result = available_functions[tc.function.name](**tc.function.arguments) print(f"Result: {result}") # add the tool result to the messages messages.append({'role': 'tool', 'tool_name': tc.function.name, 'content': str(result)}) else: # end the loop when there are no more tool calls break # continue the loop with the updated messages ``` ```typescript import ollama from 'ollama' type ToolName = 'add' | 'multiply' function add(a: number, b: number): number { return a + b } function multiply(a: number, b: number): number { return a * b } const availableFunctions: Record number> = { add, multiply, } const tools = [ { type: 'function', function: { name: 'add', description: 'Add two numbers', parameters: { type: 'object', required: ['a', 'b'], properties: { a: { type: 'integer', description: 'The first number' }, b: { type: 'integer', description: 'The second number' }, }, }, }, }, { type: 'function', function: { name: 'multiply', description: 'Multiply two numbers', parameters: { type: 'object', required: ['a', 'b'], properties: { a: { type: 'integer', description: 'The first number' }, b: { type: 'integer', description: 'The second number' }, }, }, }, }, ] async function agentLoop() { const messages = [{ role: 'user', content: 'What is (11434+12341)*412?' }] while (true) { const response = await ollama.chat({ model: 'qwen3', messages, tools, think: true, }) messages.push(response.message) console.log('Thinking:', response.message.thinking) console.log('Content:', response.message.content) const toolCalls = response.message.tool_calls ?? [] if (toolCalls.length) { for (const call of toolCalls) { const fn = availableFunctions[call.function.name as ToolName] if (!fn) { continue } const args = call.function.arguments as { a: number; b: number } console.log(`Calling ${call.function.name} with arguments`, args) const result = fn(args.a, args.b) console.log(`Result: ${result}`) messages.push({ role: 'tool', tool_name: call.function.name, content: String(result) }) } } else { break } } } agentLoop().catch(console.error) ``` ## Tool calling with streaming When streaming, gather every chunk of `thinking`, `content`, and `tool_calls`, then return those fields together with any tool results in the follow-up request. ```python from ollama import chat def get_temperature(city: str) -> str: """Get the current temperature for a city Args: city: The name of the city Returns: The current temperature for the city """ temperatures = { 'New York': '22°C', 'London': '15°C', } return temperatures.get(city, 'Unknown') messages = [{'role': 'user', 'content': "What's the temperature in New York?"}] while True: stream = chat( model='qwen3', messages=messages, tools=[get_temperature], stream=True, think=True, ) thinking = '' content = '' tool_calls = [] done_thinking = False # accumulate the partial fields for chunk in stream: if chunk.message.thinking: thinking += chunk.message.thinking print(chunk.message.thinking, end='', flush=True) if chunk.message.content: if not done_thinking: done_thinking = True print('\n') content += chunk.message.content print(chunk.message.content, end='', flush=True) if chunk.message.tool_calls: tool_calls.extend(chunk.message.tool_calls) print(chunk.message.tool_calls) # append accumulated fields to the messages if thinking or content or tool_calls: messages.append({'role': 'assistant', 'thinking': thinking, 'content': content, 'tool_calls': tool_calls}) if not tool_calls: break for call in tool_calls: if call.function.name == 'get_temperature': result = get_temperature(**call.function.arguments) else: result = 'Unknown tool' messages.append({'role': 'tool', 'tool_name': call.function.name, 'content': result}) ``` ```typescript import ollama from 'ollama' function getTemperature(city: string): string { const temperatures: Record = { 'New York': '22°C', 'London': '15°C', } return temperatures[city] ?? 'Unknown' } const getTemperatureTool = { type: 'function', function: { name: 'get_temperature', description: 'Get the current temperature for a city', parameters: { type: 'object', required: ['city'], properties: { city: { type: 'string', description: 'The name of the city' }, }, }, }, } async function agentLoop() { const messages = [{ role: 'user', content: "What's the temperature in New York?" }] while (true) { const stream = await ollama.chat({ model: 'qwen3', messages, tools: [getTemperatureTool], stream: true, think: true, }) let thinking = '' let content = '' const toolCalls: any[] = [] let doneThinking = false for await (const chunk of stream) { if (chunk.message.thinking) { thinking += chunk.message.thinking process.stdout.write(chunk.message.thinking) } if (chunk.message.content) { if (!doneThinking) { doneThinking = true process.stdout.write('\n') } content += chunk.message.content process.stdout.write(chunk.message.content) } if (chunk.message.tool_calls?.length) { toolCalls.push(...chunk.message.tool_calls) console.log(chunk.message.tool_calls) } } if (thinking || content || toolCalls.length) { messages.push({ role: 'assistant', thinking, content, tool_calls: toolCalls } as any) } if (!toolCalls.length) { break } for (const call of toolCalls) { if (call.function.name === 'get_temperature') { const args = call.function.arguments as { city: string } const result = getTemperature(args.city) messages.push({ role: 'tool', tool_name: call.function.name, content: result } ) } else { messages.push({ role: 'tool', tool_name: call.function.name, content: 'Unknown tool' } ) } } } } agentLoop().catch(console.error) ``` This loop streams the assistant response, accumulates partial fields, passes them back together, and appends the tool results so the model can complete its answer. ## Using functions as tools with Ollama Python SDK The Python SDK automatically parses functions as a tool schema so we can pass them directly. Schemas can still be passed if needed. ```python from ollama import chat def get_temperature(city: str) -> str: """Get the current temperature for a city Args: city: The name of the city Returns: The current temperature for the city """ temperatures = { 'New York': '22°C', 'London': '15°C', } return temperatures.get(city, 'Unknown') available_functions = { 'get_temperature': get_temperature, } # directly pass the function as part of the tools list response = chat(model='qwen3', messages=messages, tools=available_functions.values(), think=True) ```