package ggml // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include // #include // #include // #include "ggml.h" // #include "ggml-cpu.h" // #include "ggml-backend.h" import "C" import ( "bytes" "encoding/binary" "fmt" "io" "log/slog" "os" "sync" "unsafe" "github.com/ollama/ollama/format" fs "github.com/ollama/ollama/fs/ggml" "github.com/ollama/ollama/ml" "golang.org/x/sync/errgroup" "github.com/ollama/ollama/ml/backend/ggml/ggml/src" ) type device struct { d *C.struct_ggml_backend_device } func (d device) LogValue() slog.Value { var free, total uint64 C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total)) kind := "unknown" switch C.ggml_backend_dev_type(d.d) { case C.GGML_BACKEND_DEVICE_TYPE_CPU: kind = "cpu" case C.GGML_BACKEND_DEVICE_TYPE_GPU: kind = "gpu" case C.GGML_BACKEND_DEVICE_TYPE_ACCEL: kind = "accel" } return slog.GroupValue( slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))), slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))), slog.String("kind", kind), slog.String("free", format.HumanBytes2(free)), slog.String("total", format.HumanBytes2(total)), ) } var devices = sync.OnceValue(func() []device { ggml.OnceLoad() s := make([]device, C.ggml_backend_dev_count()) for i := range s { s[i] = device{C.ggml_backend_dev_get(C.size_t(i))} } return s }) type Backend struct { meta *fs.GGML cpus, gpus []Context tensors map[string]*Context } func New(r *os.File) (ml.Backend, error) { meta, n, err := fs.Decode(r, -1) if err != nil { return nil, err } slog.Info( "", "architecture", meta.KV().Architecture(), "file_type", meta.KV().FileType(), "name", meta.KV().String("general.name"), "description", meta.KV().String("general.description"), "num_tensors", len(meta.Tensors().Items()), "num_key_values", len(meta.KV()), ) var cpus, gpus []Context for _, d := range devices() { switch C.ggml_backend_dev_type(d.d) { case C.GGML_BACKEND_DEVICE_TYPE_CPU, C.GGML_BACKEND_DEVICE_TYPE_ACCEL: slog.Info("cpu", "device", d) cpus = append(cpus, Context{ ctx: C.ggml_init(C.struct_ggml_init_params{ mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)), no_alloc: true, }), backend: C.ggml_backend_dev_init(d.d, nil), }) case C.GGML_BACKEND_DEVICE_TYPE_GPU: slog.Info("gpu", "device", d) gpus = append(gpus, Context{ ctx: C.ggml_init(C.struct_ggml_init_params{ mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)), no_alloc: true, }), backend: C.ggml_backend_dev_init(d.d, nil), }) } } ctxFunc := func(s []Context) (*Context, error) { for _, e := range s { return &e, nil } return nil, fmt.Errorf("no devices available") } tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items())) for _, t := range meta.Tensors().Items() { c, err := ctxFunc(append(gpus, cpus...)) if err != nil { return nil, err } func() { tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0]))) cname := C.CString(t.Name) defer C.free(unsafe.Pointer(cname)) C.ggml_set_name(tt, cname) tensors[t] = c }() } for _, b := range append(gpus, cpus...) { C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend) } sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset)) var g errgroup.Group for t, c := range tensors { g.Go(func() error { bts := make([]byte, t.Size()) n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts) if err != nil { return err } if n != int(t.Size()) { return fmt.Errorf("expected %d bytes, got %d", t.Size(), n) } cname := C.CString(t.Name) defer C.free(unsafe.Pointer(cname)) C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n)) return nil }) } if err := g.Wait(); err != nil { return nil, err } return &Backend{ meta: meta, cpus: cpus, gpus: gpus, }, nil } func init() { ml.RegisterBackend("ggml", New) } func (b *Backend) Config() ml.Config { return b.meta.KV() } func (b *Backend) Get(name string) ml.Tensor { cname := C.CString(name) defer C.free(unsafe.Pointer(cname)) for _, c := range append(b.gpus, b.cpus...) { if t := C.ggml_get_tensor(c.ctx, cname); t != nil { return &Tensor{t: t} } } return nil } func (b *Backend) NewContext() ml.Context { nodes := max(8192, len(b.meta.Tensors().Items())*5) bts := make([]byte, C.size_t(nodes)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(nodes), false)) c := C.ggml_init(C.struct_ggml_init_params{ mem_buffer: unsafe.Pointer(&bts[0]), mem_size: C.size_t(len(bts)), no_alloc: true, }) backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus)) bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus)) for i, c := range append(b.gpus, b.cpus...) { backends[i] = c.backend bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend) } return &Context{ ctx: c, backend: backends[0], nodes: nodes, sched: C.ggml_backend_sched_new( (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])), (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])), C.int(len(backends)), C.size_t(nodes), true, ), } } type Context struct { ctx *C.struct_ggml_context backend *C.struct_ggml_backend sched *C.struct_ggml_backend_sched graph *C.struct_ggml_cgraph nodes int } func (c *Context) Forward(t ml.Tensor) { if c.graph == nil { c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false) } C.ggml_build_forward_expand(c.graph, t.(*Tensor).t) } func (c *Context) Compute(t ml.Tensor) ml.Tensor { c.Forward(t) C.ggml_backend_sched_graph_compute_async(c.sched, c.graph) backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t) t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t)) C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t)) return t } func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor { if len(shape) < 1 || len(shape) > 4 { panic("unsupported number of dimensions") } for _, dim := range shape { if dim < 1 { panic("invalid shape") } } var t *C.struct_ggml_tensor switch dtype { case ml.DTypeF32: t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0]))) case ml.DTypeI32: t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0]))) default: panic("unsupported dtype") } b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t)) C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b)) C.ggml_set_zero(t) return &Tensor{t: t} } func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) { n := len(s) for _, v := range shape { n /= v } if n != 1 { return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s)) } t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0]))) b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t)) C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b)) C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t)) return &Tensor{t: t}, nil } func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) { return fromSlice(c, s, shape, C.GGML_TYPE_F32) } func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) { return fromSlice(c, s, shape, C.GGML_TYPE_I32) } func (c *Context) Close() error { C.ggml_backend_sched_free(c.sched) C.ggml_free(c.ctx) return nil } type Tensor struct { t *C.struct_ggml_tensor data []byte } func (t *Tensor) LogValue() slog.Value { return slog.GroupValue( slog.String("name", C.GoString(C.ggml_get_name(t.t))), slog.String("type", C.GoString(C.ggml_type_name(t.t._type))), slog.Any("shape", t.Shape()), ) } func (t *Tensor) Dim(n int) int64 { return int64(t.t.ne[n]) } func (t *Tensor) Stride(n int) int64 { return int64(t.t.nb[n]) } func (t *Tensor) Shape() []int64 { shape := make([]int64, C.ggml_n_dims(t.t)) for i := range shape { shape[i] = t.Dim(i) } return shape } func (t *Tensor) Bytes() []byte { if bts := C.ggml_get_data(t.t); bts != nil { return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t))) } return nil } func (t *Tensor) Floats() (f32s []float32) { if t.data != nil { f32s = make([]float32, C.ggml_nelements(t.t)) _ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s) } return } func (t *Tensor) DType() ml.DType { switch t.t._type { case C.GGML_TYPE_F32: return ml.DTypeF32 case C.GGML_TYPE_I32: return ml.DTypeI32 default: return ml.DTypeOther } } func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor { if len(s) > 0 { return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim) } return t } func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor { return &Tensor{ t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)), } } func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor { return &Tensor{ t: C.ggml_cont(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor { tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w) if b != nil { tt = tt.Add(ctx, b) } return tt } func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor { return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w) } func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor { if len(shape) != 4 { panic("expected 4 dimensions") } return &Tensor{ t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])), } } func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor { if len(shape) != 4 { panic("expected 4 dimensions") } return &Tensor{ t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])), } } func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor { switch len(shape) { case 1: return &Tensor{ t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])), } case 2: return &Tensor{ t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])), } case 3: return &Tensor{ t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])), } case 4: return &Tensor{ t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])), } default: panic("unsupported number of dimensions") } } func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor { return &Tensor{ t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)), } } func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor { return &Tensor{ t: C.ggml_soft_max(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor { return &Tensor{ t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor { if len(shape) != 4 { panic("expected 4 dimensions") } return &Tensor{ t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])), } } func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor { switch len(shape) { case 1: return &Tensor{ t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)), } case 3: return &Tensor{ t: C.ggml_view_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[2]), C.size_t(shape[1]), C.size_t(offset)), } case 5: return &Tensor{ t: C.ggml_view_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(offset)), } case 7: return &Tensor{ t: C.ggml_view_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]), C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]), C.size_t(offset)), } default: panic("unsupported number of dimensions") } } const ( ropeTypeNorm C.int = iota ) func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor { if ropeFactors == nil { ropeFactors = &Tensor{} } return &Tensor{ t: C.ggml_rope_ext( ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t, C.int(ropeDim), 131072, // YaRN n_ctx_train ropeTypeNorm, // ROPE_TYPE_NORM C.float(ropeBase), C.float(ropeScale), 0., // YaRN ext_factor 1., // YaRN attn_factor 32., // YaRN beta_fast 1., // YaRN beta_slow ), } } func (t *Tensor) GELU(ctx ml.Context) ml.Tensor { return &Tensor{ t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) SILU(ctx ml.Context) ml.Tensor { return &Tensor{ t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor { return &Tensor{ t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)), } }