package kvcache import ( "errors" "fmt" "log/slog" "math" "slices" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/model/input" ) type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) // Causal cache stores K and V tensors according to their position in the // sequence. Returns the history and a mask for attending to past tokens // // The tensors are of shape embed dim, kv heads, batch size // The mask is of shape history size, batch size type Causal struct { DType ml.DType // swaWindowSize is the number of tokens that will be included in the mask // during attention operations. swaMemorySize is the number of tokens that // will be retained in memory for partial prefix caching. Set to math.MaxInt32 // for unlimited or if sliding window attention is not being used. swaWindowSize int32 swaMemorySize int32 chunkSize int32 opts CausalOptions // maxBatch is the largest batch that we might receive maxBatch int // config controls mostly backend-specific optimizations config *ml.CacheConfig // ** current forward pass ** // the active layer for Get and Put curLayer int // starting location for data storage for this batch curLoc int // size of the current batch curBatchSize int // mask of the cache as used by this batch curMask ml.Tensor // locations in the cache that are needed for this batch curCellRange cellRange // curSequences is the sequences corresponding to this pass's entries in the cache curSequences []int // curPositions is the positions corresponding to this pass's entries in the cache curPositions []int32 // ** cache metadata ** // for each possible location in the cache, stores the position and set of sequences // that reference the data there cells []cacheCell // maps from sequence to the range of locations where it is stored in the cache cellRanges map[int]cellRange // ** cache data storage ** shiftFn shiftFn backend ml.Backend ctxs map[int]ml.Context keys, values map[int]ml.Tensor } type cacheCell struct { pos int32 sequences []int } type cellRange struct { min int max int } func NewCausalCache(shift shiftFn) *Causal { return &Causal{ shiftFn: shift, ctxs: make(map[int]ml.Context), keys: make(map[int]ml.Tensor), values: make(map[int]ml.Tensor), } } func NewSWACache(windowSize int32, shift shiftFn) *Causal { return &Causal{ swaWindowSize: windowSize, shiftFn: shift, ctxs: make(map[int]ml.Context), keys: make(map[int]ml.Tensor), values: make(map[int]ml.Tensor), } } func NewSWAMemCache(windowSize int32, memorySize int32, shift shiftFn) *Causal { return &Causal{ swaWindowSize: windowSize, swaMemorySize: memorySize, shiftFn: shift, ctxs: make(map[int]ml.Context), keys: make(map[int]ml.Tensor), values: make(map[int]ml.Tensor), } } func NewChunkedAttentionCache(chunkSize int32, shift shiftFn) *Causal { return &Causal{ chunkSize: chunkSize, shiftFn: shift, ctxs: make(map[int]ml.Context), keys: make(map[int]ml.Tensor), values: make(map[int]ml.Tensor), } } func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) { if c.config == nil { var config ml.CacheConfig if cc, ok := backend.(ml.BackendCacheConfig); ok { config = cc.CacheConfig() } c.config = &config } if c.config.CachePadding == 0 { c.config.CachePadding = 1 } if c.config.MaskBatchPadding == 0 { c.config.MaskBatchPadding = 1 } if c.config.MaskDType == ml.DTypeOther { c.config.MaskDType = ml.DTypeF32 } if c.swaWindowSize == 0 { c.swaWindowSize = math.MaxInt32 } if c.swaMemorySize == 0 { c.swaMemorySize = c.swaWindowSize } // We will allocate space in the cache for the stop token, which won't be part of a follow on // sequence, so allocate an extra token of storage to ensure that we can jump back without // causing a cache break. As an optimization, only do this when we have parallel sequences // because the extra token will live in the batch buffer and won't get overwritten if we // only have a single sequence. if c.swaMemorySize != math.MaxInt32 && maxSequences > 1 { c.swaMemorySize = max(c.swaMemorySize, c.swaWindowSize+1) } if int(c.swaMemorySize) >= capacity { c.swaMemorySize = math.MaxInt32 } if c.swaMemorySize < c.swaWindowSize { panic(fmt.Errorf("sliding window memory (%v) must be at least as large as the window (%v)", c.swaMemorySize, c.swaWindowSize)) } var cacheSize int if c.swaMemorySize == math.MaxInt32 { cacheSize = maxSequences * capacity } else { cacheSize = (maxSequences * int(c.swaMemorySize)) + maxBatch } cacheSize = roundUp(cacheSize, c.config.CachePadding) c.cells = make([]cacheCell, cacheSize) c.DType = dtype c.cellRanges = make(map[int]cellRange) c.backend = backend c.maxBatch = maxBatch } func (c *Causal) SetConfig(config ml.CacheConfig) { if c.config != nil { panic("config cannot be changed after being previously set, either by the model or backend") } c.config = &config } func (c *Causal) Close() { for _, ctx := range c.ctxs { ctx.Close() } } func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error { c.curBatchSize = len(batch.Positions) c.curSequences = batch.Sequences c.curPositions = batch.Positions c.opts.Except = nil if !reserve { c.updateSlidingWindow() var err error c.curLoc, err = c.findStartLoc() if errors.Is(err, ErrKvCacheFull) { c.defrag() c.curLoc, err = c.findStartLoc() } if err != nil { return err } for i, pos := range batch.Positions { seq := batch.Sequences[i] c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}} seqRange, ok := c.cellRanges[seq] if !ok { seqRange = newRange() } seqRange.min = min(seqRange.min, c.curLoc+i) c.curCellRange.min = min(c.curCellRange.min, c.curLoc+i) seqRange.max = max(seqRange.max, c.curLoc+i) c.curCellRange.max = max(c.curCellRange.max, c.curLoc+i) c.cellRanges[seq] = seqRange } } else { // If we are reserving memory, don't update any of the cache metadata but set the size // to the worst case. c.curLoc = 0 c.curCellRange.min = 0 c.curCellRange.max = len(c.cells) - 1 } c.curMask = c.buildMask(ctx) return nil } func newRange() cellRange { return cellRange{ min: math.MaxInt, max: 0, } } // Find the first contiguous block of at least curBatchSize func (c *Causal) findStartLoc() (int, error) { var start, count int for i := range c.cells { if len(c.cells[i].sequences) == 0 { count++ if count >= c.curBatchSize { return start, nil } } else { start = i + 1 count = 0 } } return 0, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize) } func (c *Causal) updateSlidingWindow() { c.curCellRange = newRange() if c.swaMemorySize == math.MaxInt32 { for _, seq := range c.curSequences { if seqRange, ok := c.cellRanges[seq]; ok { c.curCellRange.min = min(c.curCellRange.min, seqRange.min) c.curCellRange.max = max(c.curCellRange.max, seqRange.max) } } return } type lowestPosition struct { pos int32 curBatch bool } // create a map of unique sequences to the lowest position in that sequence lowestPos := make(map[int]lowestPosition) for i := range c.curPositions { seq := c.curSequences[i] lowest, ok := lowestPos[seq] if !ok { lowest = lowestPosition{pos: c.curPositions[i], curBatch: true} } else if c.curPositions[i] < lowest.pos { lowest.pos = c.curPositions[i] } lowestPos[seq] = lowest } // for any sequences are not part of this batch, clean up any tokens // that are no longer needed after the processing of the previous // batch for seq, seqRange := range c.cellRanges { if _, ok := lowestPos[seq]; !ok { var last int32 for i := seqRange.min; i <= seqRange.max; i++ { if slices.Contains(c.cells[i].sequences, seq) { last = max(last, c.cells[i].pos) } } lowestPos[seq] = lowestPosition{pos: last + 1, curBatch: false} } } // delete any entries that are beyond the window of the oldest position in the sequence for seq, lowest := range lowestPos { oldRange, ok := c.cellRanges[seq] if !ok { continue } newRange := newRange() for i := oldRange.min; i <= oldRange.max; i++ { if slices.Contains(c.cells[i].sequences, seq) { if c.cells[i].pos < lowest.pos-c.swaMemorySize { c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq }) } else { newRange.min = min(newRange.min, i) newRange.max = max(newRange.max, i) } if lowest.curBatch && c.cells[i].pos >= lowest.pos-c.swaWindowSize { c.curCellRange.min = min(c.curCellRange.min, i) c.curCellRange.max = max(c.curCellRange.max, i) } } } c.cellRanges[seq] = newRange } } func roundDown(length, pad int) int { return (length / pad) * pad } func roundUp(length, pad int) int { return ((length + pad - 1) / pad) * pad } // Builds a mask of history x batch indicating whether for each token in the batch the // token in the history should apply. This is based on both the sequence and causality (the // position of the history is not ahead of the token in the batch). func (c *Causal) buildMask(ctx ml.Context) ml.Tensor { // Align and pad the two dimensions as required by the backend batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding) c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding) c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1 length := c.curCellRange.max - c.curCellRange.min + 1 mask := make([]float32, batchSize*length) for i := range c.curBatchSize { enabled := !slices.Contains(c.opts.Except, i) for j := c.curCellRange.min; j <= c.curCellRange.max; j++ { if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) || (enabled && c.cells[j].pos > c.curPositions[i]) || c.chunkSize > 0 && c.cells[j].pos < c.curPositions[i]-c.curPositions[i]%c.chunkSize || c.cells[j].pos < c.curPositions[i]-c.swaWindowSize { mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1)) } } } // Mask out any padding tokens we added. For padding that we added to the cache history, this // has already been masked out because the sequence doesn't match. for i := c.curBatchSize * length; i < len(mask); i++ { mask[i] = float32(math.Inf(-1)) } maskTensor := ctx.Input().FromFloats(mask, length, batchSize) if c.config.MaskDType != ml.DTypeF32 { maskTensor = maskTensor.Cast(ctx, c.config.MaskDType) } return maskTensor } func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) { for i, key := range c.keys { if key == nil { continue } kHeadDim := key.Dim(0) numKVHeads := key.Dim(1) rowSize := key.Stride(2) kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length) kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length) value := c.values[i] var vSrcView, vDstView ml.Tensor if c.config.PermutedV { vHeadDim := value.Dim(1) elemSize := value.Stride(0) vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads) vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads) } else { vHeadDim := value.Dim(0) rowSize := value.Stride(2) vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length) vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length) } ctx.Forward( kSrcView.Copy(ctx, kDstView), vSrcView.Copy(ctx, vDstView), ) } } func (c *Causal) defrag() { slog.Debug("defragmenting kv cache") // Defrag strategy: // - Search for empty holes at the beginning of the cache, // filling them with active data starting at the end // - If there are contiguous elements that need to be moved, // combine them into a single operation by holding new moves // until we see that the next one is non-contiguous // - Fill up the context with the maximum number of operations it // can hold then compute that and continue with a new context // // We could try to optimize placement by grouping blocks from // the same sequences together but most likely the next forward // pass will disrupt this anyways, so the real world benefit // seems limited as this time. ctx := c.backend.NewContext() // For every move, 6 tensors are required per layer (2 views and a // copy for each of k and v). We also need to refer to the original // k and v cache tensors - once per layer, not per move. layers := 0 for _, key := range c.keys { if key == nil { continue } layers++ } maxMoves := (ctx.MaxGraphNodes() - 2*layers) / (6 * layers) moves := 0 var pendingSrc, pendingDst, pendingLen int src := len(c.cells) - 1 for dst := 0; dst < src; dst++ { if len(c.cells[dst].sequences) == 0 { for ; src > dst; src-- { if len(c.cells[src].sequences) != 0 { c.cells[dst] = c.cells[src] c.cells[src] = cacheCell{} if pendingLen > 0 { if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen { pendingSrc = src pendingLen++ break } else { c.moveCells(ctx, pendingSrc, pendingDst, pendingLen) moves++ } } pendingSrc = src pendingDst = dst pendingLen = 1 break } } } if moves >= maxMoves { ctx.Compute() ctx.Close() ctx = c.backend.NewContext() moves = 0 } } if pendingLen > 0 { c.moveCells(ctx, pendingSrc, pendingDst, pendingLen) moves++ } if moves > 0 { ctx.Compute() } ctx.Close() // Reset range metadata for seq := range c.cellRanges { seqRange := newRange() for i, cell := range c.cells { if slices.Contains(cell.sequences, seq) { if i < seqRange.min { seqRange.min = i } if i > seqRange.max { seqRange.max = i } } } c.cellRanges[seq] = seqRange } c.updateSlidingWindow() } func (c *Causal) SetLayer(layer int) { c.curLayer = layer } type CausalOptions struct { // Enabled controls whether the causal mask is generated for a particular index in a batch Except []int } // SetCausal disables causal mask generation for a particular range of indicies in // the current batch for subsequent calls to Get. The state resets for the next forward pass. func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) { if !slices.Equal(c.opts.Except, opts.Except) { c.opts = opts if ctx != nil { c.curMask = c.buildMask(ctx) } } } func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) { key := c.keys[c.curLayer] value := c.values[c.curLayer] kHeadDim := key.Dim(0) numKVHeads := key.Dim(1) rowSize := key.Stride(2) cachedSize := c.curMask.Dim(0) key = key.View(ctx, rowSize*c.curCellRange.min, kHeadDim, key.Stride(1), numKVHeads, key.Stride(2), cachedSize, ) if c.config.PermutedV { vHeadDim := value.Dim(1) elemSize := value.Stride(0) value = value.View(ctx, elemSize*c.curCellRange.min, cachedSize, value.Stride(1), vHeadDim, value.Stride(2), numKVHeads, ) } else { vHeadDim := value.Dim(0) rowSize := value.Stride(2) value = value.View(ctx, rowSize*c.curCellRange.min, vHeadDim, value.Stride(1), numKVHeads, value.Stride(2), cachedSize, ) } return key, value, c.curMask } func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) { kHeadDim := key.Dim(0) vHeadDim := value.Dim(0) numKVHeads := key.Dim(1) batchSize := key.Dim(2) if c.curBatchSize != batchSize { panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize)) } if _, ok := c.ctxs[c.curLayer]; !ok { c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer) } if _, ok := c.keys[c.curLayer]; !ok { c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, len(c.cells)) } if _, ok := c.values[c.curLayer]; !ok { if c.config.PermutedV { c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), vHeadDim, numKVHeads) } else { c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, len(c.cells)) } } rowSize := c.keys[c.curLayer].Stride(2) ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, rowSize*c.curLoc, kHeadDim*numKVHeads*batchSize))) if c.config.PermutedV { elemSize := c.values[c.curLayer].Stride(0) value = value.Permute(ctx, 1, 2, 0, 3) ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads))) } else { rowSize := c.values[c.curLayer].Stride(2) ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, rowSize*c.curLoc, vHeadDim*numKVHeads*batchSize))) } } func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) { seqRange := newRange() for i := range c.cells { // Remove the contents of dstSeq so that we only have the copied prefix, metadata will be reset at the end if slices.Contains(c.cells[i].sequences, dstSeq) { c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == dstSeq }) } if slices.Contains(c.cells[i].sequences, srcSeq) && c.cells[i].pos < len { c.cells[i].sequences = append(c.cells[i].sequences, dstSeq) if i < seqRange.min { seqRange.min = i } if i > seqRange.max { seqRange.max = i } } } c.cellRanges[dstSeq] = seqRange } func (c *Causal) CanResume(seq int, pos int32) bool { if c.swaMemorySize == math.MaxInt32 { return true } seqRange, ok := c.cellRanges[seq] if !ok { return false } // for sliding window, check that the window of the new sequence is contained in // the window of what we are storing var first int32 = math.MaxInt32 var last int32 = -1 for i := seqRange.min; i <= seqRange.max; i++ { if slices.Contains(c.cells[i].sequences, seq) { first = min(first, c.cells[i].pos) last = max(last, c.cells[i].pos) } } if last == -1 { return false } posWindowStart := max(0, pos-c.swaWindowSize) return posWindowStart >= first && pos <= last+1 } func (c *Causal) shift(seq int, beginIndex, offset int32) error { if c.shiftFn == nil { return ErrNotSupported } seqRange := c.cellRanges[seq] for start := seqRange.min; start <= seqRange.max; start += c.maxBatch { size := min(seqRange.max-start+1, c.maxBatch) offsets := make([]int32, size) var batchFirst, batchLast int batchFirst = -1 for i := range offsets { cell := c.cells[start+i] if slices.Contains(cell.sequences, seq) && cell.pos >= beginIndex { offsets[i] = offset if batchFirst < 0 { batchFirst = i } batchLast = i } } if batchFirst < 0 { continue } offsets = offsets[batchFirst : batchLast+1] ctx := c.backend.NewContext() kShift := ctx.Input().FromInts(offsets, len(offsets)) for i, key := range c.keys { if key == nil { continue } kHeadDim := key.Dim(0) numKVHeads := key.Dim(1) rowSize := key.Stride(2) key = key.View(ctx, rowSize*(start+batchFirst), kHeadDim, key.Stride(1), numKVHeads, key.Stride(2), len(offsets), ) roped, err := c.shiftFn(ctx, i, key, kShift) if err != nil { ctx.Close() return err } ctx.Forward(roped.Copy(ctx, key)) } ctx.Compute() ctx.Close() } return nil } func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error { // TODO(jessegross): We should check to see if removing the middle of the sequence will // cause the sliding window to encompass tokens that we no longer have. If so, then we // should return an error, which will trigger the runner to evaluate the full history and // rebuild the window. However, if we have multimodal inputs in our history, this reuse // results in use after free, so we don't do it for now. var offset int32 if endIndex != math.MaxInt32 { offset = beginIndex - endIndex } seqRange := newRange() for i := range c.cells { if slices.Contains(c.cells[i].sequences, seq) { if c.cells[i].pos >= beginIndex && c.cells[i].pos < endIndex { c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq }) } else { if c.cells[i].pos >= endIndex { if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) { return errors.New("shifting cells shared by multiple sequences not supported") } c.cells[i].pos += offset } if i < seqRange.min { seqRange.min = i } if i > seqRange.max { seqRange.max = i } } } } if seqRange == newRange() { delete(c.cellRanges, seq) return nil } c.cellRanges[seq] = seqRange if endIndex != math.MaxInt32 { err := c.shift(seq, endIndex+offset, offset) if err != nil { return err } } return nil }