package ml import ( "bytes" "context" "encoding/binary" "fmt" "math" "slices" "strconv" "strings" "github.com/ollama/ollama/fs" ) type Backend interface { // Close frees all memory associated with this backend Close() Load(ctx context.Context, progress func(float32)) error // BackendMemory returns the memory allocations that were made for this model BackendMemory() BackendMemory Config() fs.Config Get(name string) Tensor NewContext() Context NewContextSize(size int) Context // Enumerate the devices available for inference via this backend BackendDevices() []DeviceInfo } // BackendCacheConfig should be implemented by backends that need special output // from the cache to meet specific requirements. It is frequently implemented in // conjunction with ScaledDotProductAttention. type BackendCacheConfig interface { CacheConfig() CacheConfig } // CacheConfig controls optimizations (mostly backend-specific) that may transform // the output the cache to work better with specific kernels. type CacheConfig struct { // CachePadding specifies the multiple for the number of tokens of cache history // that will be returned from cache Get for k, v and mask. The capacity of the // cache itself will also be increased to a multiple of this size if needed. CachePadding int // PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put // and return the permuted version via Get. This uses the cache copy operation // to avoid a Contiguous call on the permuted tensor. PermutedV bool // MaskDType specifies the data type for generating the mask. If unset it will // default to DTypeF32. MaskDType DType // MaskBatchPadding specifies the multiple for the batch size dimension in the mask. // Any position that does not correspond to an actual token will be filled with -Inf. MaskBatchPadding int } // BackendParams controls how the backend loads and executes models type BackendParams struct { // AllocMemory causes the backend to allocate memory for the model. If // false, this is only being used for discovering the required amount of // memory and cannot load the model for running. AllocMemory bool // NumThreads sets the number of threads to use if running on the CPU NumThreads int // GPULayers is the set of layers to offload to GPUs GPULayers GPULayersList // FlashAttention indicates that we should use a fused flash attention kernel FlashAttention bool } var backends = make(map[string]func(string, BackendParams) (Backend, error)) func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) { if _, ok := backends[name]; ok { panic("backend: backend already registered") } backends[name] = f } func NewBackend(modelPath string, params BackendParams) (Backend, error) { if backend, ok := backends["ggml"]; ok { return backend(modelPath, params) } return nil, fmt.Errorf("unsupported backend") } type Context interface { Empty(dtype DType, shape ...int) Tensor Zeros(dtype DType, shape ...int) Tensor FromBytes(dtype DType, s []byte, shape ...int) Tensor FromFloats(s []float32, shape ...int) Tensor FromInts(s []int32, shape ...int) Tensor // Arange creates a 1D tensor with values within an interval (start, stop] increased by step. Arange(start, stop, step float32, dtype DType) Tensor Forward(...Tensor) Context // SetBatchSize provides a hint on the batch size to optimize processing // Uses heuristics if not set SetBatchSize(int) Compute(...Tensor) ComputeWithNotify(func(), ...Tensor) // notify callback once compute has begun // Reserve is analogous to Compute but rather than executing a // graph, simply preallocates memory. Typically called with a // worst case graph to ensure all resources are available for // for future inference. Reserve() MaxGraphNodes() int Close() // Input returns a context appropriate for creating tensors that are // inputs to the model (which includes things like output locations) Input() Context // Layer returns a context appropriate for creating intermediate tensors Layer(int) Context } type Tensor interface { Dim(n int) int Stride(n int) int Shape() []int DType() DType Cast(ctx Context, dtype DType) Tensor Bytes() []byte Floats() []float32 FromBytes([]byte) FromFloats([]float32) FromInts([]int32) Neg(ctx Context) Tensor Add(ctx Context, t2 Tensor) Tensor Sub(ctx Context, t2 Tensor) Tensor Mul(ctx Context, t2 Tensor) Tensor Div(ctx Context, t2 Tensor) Tensor Mulmat(ctx Context, t2 Tensor) Tensor MulmatFullPrec(ctx Context, t2 Tensor) Tensor MulmatID(ctx Context, t2, ids Tensor) Tensor AddID(ctx Context, t2, ids Tensor) Tensor Softmax(ctx Context) Tensor L2Norm(ctx Context, eps float32) Tensor LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor RMSNorm(ctx Context, weight Tensor, eps float32) Tensor Scale(ctx Context, s float64) Tensor SumRows(ctx Context) Tensor AvgPool2D(ctx Context, k, s int, p float32) Tensor Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor Conv3D(ctx Context, weight Tensor, c, s0, s1, s2, p0, p1, p2, d0, d1, d2 int) Tensor IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor Sin(ctx Context) Tensor Cos(ctx Context) Tensor Tanh(ctx Context) Tensor GELU(ctx Context, up ...Tensor) Tensor SILU(ctx Context, up ...Tensor) Tensor RELU(ctx Context, up ...Tensor) Tensor Sigmoid(ctx Context) Tensor // AlphaLimitSILU is a variant of SILU that clamps the input to the range [-limit, limit] SILUAlphaLimit(ctx Context, up Tensor, alpha, limit float32) Tensor Reshape(ctx Context, shape ...int) Tensor View(ctx Context, offset int, shape ...int) Tensor Permute(ctx Context, shape ...int) Tensor Contiguous(ctx Context, shape ...int) Tensor Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor Pad(ctx Context, shape ...int) Tensor Stack(ctx Context, dim int, s ...Tensor) Tensor // Repeat repeats the tensor n times along dimension dim Repeat(ctx Context, dim, n int) Tensor Concat(ctx Context, t2 Tensor, dim int) Tensor Rows(ctx Context, t2 Tensor) Tensor Copy(ctx Context, t2 Tensor) Tensor Duplicate(ctx Context) Tensor TopK(ctx Context, k int) Tensor Argsort(ctx Context) Tensor Mean(ctx Context) Tensor Variance(ctx Context) Tensor Stddev(ctx Context) Tensor Sqr(ctx Context) Tensor Sqrt(ctx Context) Tensor Clamp(ctx Context, min, max float32) Tensor } // ScaledDotProductAttention implements a fused attention // operation equivalent to following code on a tensor named // query: // // query = query.Permute(ctx, 0, 2, 1, 3) // key = key.Permute(ctx, 0, 2, 1, 3) // value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx) // // kq := key.MulmatFullPrec(ctx, query) // // kq = kq.Scale(ctx, scale) // // if mask != nil { // kq = kq.Add(ctx, mask) // } // // kq = kq.Softmax(ctx) // // kqv := value.Mulmat(ctx, kq) // return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) type ScaledDotProductAttention interface { ScaledDotProductAttention(ctx Context, key, value, mask, sinks Tensor, scale float64) Tensor } type number interface { ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~float32 | ~float64 | ~complex64 | ~complex128 } func mul[T number](s ...T) T { p := T(1) for _, v := range s { p *= v } return p } type DumpOptions func(*dumpOptions) // DumpWithPrecision sets the number of decimal places to print. Applies to float32 and float64. func DumpWithPrecision(n int) DumpOptions { return func(opts *dumpOptions) { opts.Precision = n } } // DumpWithThreshold sets the threshold for printing the entire tensor. If the number of elements // is less than or equal to this value, the entire tensor will be printed. Otherwise, only the // beginning and end of each dimension will be printed. func DumpWithThreshold(n int) DumpOptions { return func(opts *dumpOptions) { opts.Threshold = n } } // DumpWithEdgeItems sets the number of elements to print at the beginning and end of each dimension. func DumpWithEdgeItems(n int) DumpOptions { return func(opts *dumpOptions) { opts.EdgeItems = n } } type dumpOptions struct { Precision, Threshold, EdgeItems int } func Dump(ctx Context, t Tensor, optsFuncs ...DumpOptions) string { opts := dumpOptions{Precision: 4, Threshold: 1000, EdgeItems: 3} for _, optsFunc := range optsFuncs { optsFunc(&opts) } if mul(t.Shape()...) <= opts.Threshold { opts.EdgeItems = math.MaxInt } switch t.DType() { case DTypeF32: return dump[[]float32](ctx, t, opts.EdgeItems, func(f float32) string { return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32) }) case DTypeF16, DTypeQ80, DTypeQ40: f32 := ctx.Input().Empty(DTypeF32, t.Shape()...) f32 = t.Copy(ctx, f32) return dump[[]float32](ctx, f32, opts.EdgeItems, func(f float32) string { return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32) }) case DTypeI32: return dump[[]int32](ctx, t, opts.EdgeItems, func(i int32) string { return strconv.FormatInt(int64(i), 10) }) default: return "" } } func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string { if t.Bytes() == nil { ctx.Forward(t).Compute(t) } s := make(S, mul(t.Shape()...)) if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil { panic(err) } shape := t.Shape() slices.Reverse(shape) var sb strings.Builder var f func([]int, int) f = func(dims []int, stride int) { prefix := strings.Repeat(" ", len(shape)-len(dims)+1) sb.WriteString("[") defer func() { sb.WriteString("]") }() for i := 0; i < dims[0]; i++ { if i >= items && i < dims[0]-items { sb.WriteString("..., ") // skip to next printable element skip := dims[0] - 2*items if len(dims) > 1 { stride += mul(append(dims[1:], skip)...) fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix) } i += skip - 1 } else if len(dims) > 1 { f(dims[1:], stride) stride += mul(dims[1:]...) if i < dims[0]-1 { fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix) } } else { text := fn(s[stride+i]) if len(text) > 0 && text[0] != '-' { sb.WriteString(" ") } sb.WriteString(text) if i < dims[0]-1 { sb.WriteString(", ") } } } } f(shape, 0) return sb.String() } type DType int const ( DTypeOther DType = iota DTypeF32 DTypeF16 DTypeQ80 DTypeQ40 DTypeI32 DTypeMXFP4 )