package bert import ( "cmp" "math" "github.com/ollama/ollama/fs" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/ml/nn/pooling" "github.com/ollama/ollama/model" "github.com/ollama/ollama/model/input" ) type Model struct { model.Base model.TextProcessor TokenEmbedding *nn.Embedding `gguf:"token_embd"` TypeEmbedding *nn.Embedding `gguf:"token_types"` PositionEmbedding *nn.Embedding `gguf:"position_embd"` TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"` Layers []EncoderLayer `gguf:"blk"` Options } // Forward implements model.Model. func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) { hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs) hiddenStates = hiddenStates.Add(ctx, m.TypeEmbedding.Weight.Slice(ctx, 1, 0, 1, 1)) hiddenStates = hiddenStates.Add(ctx, m.PositionEmbedding.Forward(ctx, ctx.Input().FromInts(batch.Positions, len(batch.Positions)))) hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps) for _, layer := range m.Layers { hiddenStates = layer.Forward(ctx, hiddenStates, &m.Options) } hiddenStates = m.poolingType.Forward(ctx, hiddenStates) if m.normalize { hiddenStates = hiddenStates.L2Norm(ctx, 1e-12) } return hiddenStates, nil } type EncoderLayer struct { *Attention AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"` *MLP MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"` } func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor { // Attention residual := hiddenStates hiddenStates = e.Attention.Forward(ctx, hiddenStates, opts) hiddenStates = hiddenStates.Add(ctx, residual) hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps) // MLP residual = hiddenStates hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts) hiddenStates = hiddenStates.Add(ctx, residual) hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps) return hiddenStates } type Attention struct { Query *nn.Linear `gguf:"attn_q"` QueryNorm *nn.LayerNorm `gguf:"attn_q_norm"` Key *nn.Linear `gguf:"attn_k"` KeyNorm *nn.LayerNorm `gguf:"attn_k_norm"` Value *nn.Linear `gguf:"attn_v"` Output *nn.Linear `gguf:"attn_output"` } func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor { batchSize := hiddenStates.Dim(1) query := a.Query.Forward(ctx, hiddenStates) if a.QueryNorm != nil { query = a.QueryNorm.Forward(ctx, query, opts.eps) } query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize) key := a.Key.Forward(ctx, hiddenStates) if a.KeyNorm != nil { key = a.KeyNorm.Forward(ctx, key, opts.eps) } key = key.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize) value := a.Value.Forward(ctx, hiddenStates) value = value.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize) attention := nn.Attention(ctx, query, key, value, 1/math.Sqrt(float64(opts.headDim())), nil) attention = attention.Reshape(ctx, opts.hiddenSize, batchSize) return a.Output.Forward(ctx, attention) } type MLP struct { Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` } func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor { return m.Down.Forward(ctx, m.Up.Forward(ctx, hiddenStates).GELU(ctx)) } type Options struct { hiddenSize, numHeads, numKVHeads, keyLength, valueLength int poolingType pooling.Type eps float32 normalize bool } func (o Options) headDim() int { return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads) } func New(c fs.Config) (model.Model, error) { var processor model.TextProcessor switch c.String("tokenizer.ggml.model", "bert") { case "bert": processor = model.NewWordPiece( &model.Vocabulary{ Values: c.Strings("tokenizer.ggml.tokens"), Scores: c.Floats("tokenizer.ggml.scores"), Types: c.Ints("tokenizer.ggml.token_type"), AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true), BOS: []int32{ int32(cmp.Or( c.Uint("tokenizer.ggml.cls_token_id"), c.Uint("tokenizer.ggml.bos_token_id"), )), }, AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true), EOS: []int32{ int32(cmp.Or( c.Uint("tokenizer.ggml.separator_token_id"), //nolint:misspell // NOTE: "seperator_token_id" is a typo in model metadata but we need to // support it for compatibility. c.Uint("tokenizer.ggml.seperator_token_id"), c.Uint("tokenizer.ggml.eos_token_id"), )), }, }, ) default: return nil, model.ErrUnsupportedTokenizer } return &Model{ TextProcessor: processor, Layers: make([]EncoderLayer, c.Uint("block_count")), Options: Options{ hiddenSize: int(c.Uint("embedding_length")), numHeads: int(c.Uint("attention.head_count")), numKVHeads: int(c.Uint("attention.head_count_kv")), eps: c.Float("attention.layer_norm_epsilon"), poolingType: pooling.Type(c.Uint("pooling_type")), normalize: c.Bool("normalize_embeddings", true), }, }, nil } func init() { model.Register("bert", New) model.Register("bert_embed", New) }