/** * llama.cpp - commit 40c6d79fb52f995f47507fedfeaae2ac05d9b35c - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "amx.h" #include "common.h" #include "mmq.h" #include "ggml-backend-impl.h" #include "ggml-backend.h" #include "ggml-impl.h" #include "ggml-cpu.h" #if defined(__gnu_linux__) #include #include #endif #include #include #include #if defined(__AMX_INT8__) && defined(__AVX512VNNI__) // AMX buffer interface static void ggml_backend_amx_buffer_free_buffer(ggml_backend_buffer_t buffer) { free(buffer->context); } static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) { return (void *)(buffer->context); } static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { memset((char *)tensor->data + offset, value, size); GGML_UNUSED(buffer); } static void ggml_backend_amx_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { if (qtype_has_amx_kernels(tensor->type)) { ggml_backend_amx_convert_weight(tensor, data, offset, size); } else { memcpy((char *)tensor->data + offset, data, size); } GGML_UNUSED(buffer); } static void ggml_backend_amx_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { GGML_ASSERT(!qtype_has_amx_kernels(tensor->type)); memcpy(data, (const char *)tensor->data + offset, size); GGML_UNUSED(buffer); } static bool ggml_backend_amx_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { if (ggml_backend_buffer_is_host(src->buffer)) { if (qtype_has_amx_kernels(src->type)) { ggml_backend_amx_convert_weight(dst, src->data, 0, ggml_nbytes(dst)); } else { memcpy(dst->data, src->data, ggml_nbytes(src)); } return true; } return false; GGML_UNUSED(buffer); } static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { memset(buffer->context, value, buffer->size); } static ggml_backend_buffer_i ggml_backend_amx_buffer_interface = { /* .free_buffer = */ ggml_backend_amx_buffer_free_buffer, /* .get_base = */ ggml_backend_amx_buffer_get_base, /* .init_tensor = */ NULL, // no initialization required /* .memset_tensor = */ ggml_backend_amx_buffer_memset_tensor, /* .set_tensor = */ ggml_backend_amx_buffer_set_tensor, /* .get_tensor = */ ggml_backend_amx_buffer_get_tensor, /* .cpy_tensor = */ ggml_backend_amx_buffer_cpy_tensor, /* .clear = */ ggml_backend_amx_buffer_clear, /* .reset = */ NULL, }; static const char * ggml_backend_amx_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "AMX"; GGML_UNUSED(buft); } static ggml_backend_buffer_t ggml_backend_amx_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { void * data = aligned_alloc(TENSOR_ALIGNMENT, size); if (data == NULL) { fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size); return NULL; } return ggml_backend_buffer_init(buft, ggml_backend_amx_buffer_interface, data, size); } static size_t ggml_backend_amx_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return TENSOR_ALIGNMENT; GGML_UNUSED(buft); } static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) { return ggml_backend_amx_get_alloc_size(tensor); GGML_UNUSED(buft); } static bool ggml_backend_amx_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return false; GGML_UNUSED(buft); } #define ARCH_GET_XCOMP_PERM 0x1022 #define ARCH_REQ_XCOMP_PERM 0x1023 #define XFEATURE_XTILECFG 17 #define XFEATURE_XTILEDATA 18 static bool ggml_amx_init() { #if defined(__gnu_linux__) if (syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA)) { fprintf(stderr, "AMX is not ready to be used!\n"); return false; } return true; #elif defined(_WIN32) return true; #endif } ggml_backend_buffer_type_t ggml_backend_amx_buffer_type() { static struct ggml_backend_buffer_type ggml_backend_buffer_type_amx = { /* .iface = */ { /* .get_name = */ ggml_backend_amx_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment, /* .get_max_size = */ NULL, // defaults to SIZE_MAX /* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size, /* .is_host = */ ggml_backend_amx_buffer_type_is_host, }, /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), /* .context = */ NULL, }; if (!ggml_amx_init()) { return NULL; } return &ggml_backend_buffer_type_amx; } bool ggml_backend_amx_buft_is_amx(ggml_backend_buffer_type_t buft) { return buft->iface.get_name == ggml_backend_amx_buffer_type_get_name; } bool ggml_backend_amx_device_supports_op(const struct ggml_tensor * op) { // handle only 2d gemm for now auto is_contiguous_2d = [](const struct ggml_tensor * t) { return ggml_is_contiguous(t) && t->ne[3] == 1 && t->ne[2] == 1; }; switch (op->op) { case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: return true; case GGML_OP_MUL_MAT: { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const enum ggml_type type = src0->type; const int64_t ne0 = op->ne[0]; // amx kernels enables for Q4_0, Q4_1, Q8_0, F16 // Q4_K, Q5_K, Q6_K, IQ4_XS enabled for QK_K = 256 bool has_amx_kernels = qtype_has_amx_kernels(type) || (type == GGML_TYPE_F16); bool can_use_amx = is_contiguous_2d(src0) && // src0 must be contiguous is_contiguous_2d(src1) && // src1 must be contiguous src1->type == GGML_TYPE_F32 && // src1 must be float32 has_amx_kernels && // with amx kernel impls ne0 % (TILE_N * 2) == 0; // out_features is 32x return can_use_amx; } default: return false; } } #endif // defined(__AMX_INT8__) && defined(__AVX512VNNI__)