/** * llama.cpp - commit 40c6d79fb52f995f47507fedfeaae2ac05d9b35c - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <algorithm> #include <cstdint> #include "argmax.cuh" #include "common.cuh" #include "sum.cuh" static __global__ void argmax_f32(const float * __restrict__ x, int32_t * __restrict__ dst, const int64_t ncols) { const int64_t row = blockIdx.x; float maxval = -FLT_MAX; int argmax = -1; const float * rowx = x + row * ncols; for (int32_t col = threadIdx.x; col < ncols; col += blockDim.x) { const float val = rowx[col]; if (val > maxval) { maxval = val; argmax = col; } } #pragma unroll for (int offset = 16; offset > 0; offset >>= 1) { const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE); const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE); if (val > maxval) { maxval = val; argmax = col; } } const int n_warps = blockDim.x / WARP_SIZE; const int lane_id = threadIdx.x % WARP_SIZE; const int warp_id = threadIdx.x / WARP_SIZE; if (n_warps > 1) { constexpr int max_warps = 1024 / WARP_SIZE; __shared__ float shared_maxval[max_warps]; __shared__ int shared_argmax[max_warps]; if (lane_id == 0) { shared_maxval[warp_id] = maxval; shared_argmax[warp_id] = argmax; } __syncthreads(); if (warp_id == 0) { if (lane_id < n_warps) { maxval = shared_maxval[lane_id]; argmax = shared_argmax[lane_id]; } #pragma unroll for (int offset = 16; offset > 0; offset >>= 1) { const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE); const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE); if (val > maxval) { maxval = val; argmax = col; } } } } if (warp_id == 0 && lane_id == 0) { dst[row] = argmax; } } void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_I32); GGML_ASSERT(ggml_is_contiguous(src0)); const int64_t ne00 = src0->ne[0]; const int64_t nrows = ggml_nrows(src0); const float * src0_d = (const float *) src0->data; int32_t * dst_d = (int32_t *) dst->data; cudaStream_t stream = ctx.stream(); const int64_t num_blocks = nrows; const int64_t num_threads = std::min<int64_t>(1024, (ne00 + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE); const dim3 blocks_dim(num_threads, 1, 1); const dim3 blocks_num(num_blocks, 1, 1); argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00); }