/** * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "llama-hparams.h" #include "ggml.h" #include uint32_t llama_hparams::n_head(uint32_t il) const { if (il < n_layer) { return n_head_arr[il]; } GGML_ABORT("fatal error"); } uint32_t llama_hparams::n_head_kv(uint32_t il) const { if (il < n_layer) { return n_head_kv_arr[il]; } GGML_ABORT("fatal error"); } uint32_t llama_hparams::n_ff(uint32_t il) const { if (il < n_layer) { return n_ff_arr[il]; } GGML_ABORT("fatal error"); } uint32_t llama_hparams::n_gqa(uint32_t il) const { const uint32_t n_head = this->n_head(il); const uint32_t n_head_kv = this->n_head_kv(il); if (n_head_kv == 0) { return 0; } return n_head/n_head_kv; } uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const { const uint32_t n_head_kv = this->n_head_kv(il); return n_embd_head_k * n_head_kv; } uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const { const uint32_t n_head_kv = this->n_head_kv(il); return n_embd_head_v * n_head_kv; } uint32_t llama_hparams::n_embd_k_s() const { if (wkv_head_size != 0) { // for RWKV models return 2 * n_embd; } // TODO: maybe support other convolution strides than 1 // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; } uint32_t llama_hparams::n_embd_v_s() const { if (wkv_head_size != 0) { // corresponds to RWKV's wkv_states size return n_embd * wkv_head_size; } // corresponds to Mamba's ssm_states size return ssm_d_state * ssm_d_inner; } bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const { if (il < n_layer) { return n_bskcn_arr[n][il] > 0; } GGML_ABORT("fatal error"); } bool llama_hparams::cross_attention_layers(uint32_t il) const { return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end(); }