/** * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include "llama.h" #include <array> // bump if necessary #define LLAMA_MAX_LAYERS 512 #define LLAMA_MAX_EXPERTS 256 // DeepSeekV3 enum llama_expert_gating_func_type { LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1, LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2, }; struct llama_hparams_posnet { uint32_t n_embd; uint32_t n_layer; }; struct llama_hparams_convnext { uint32_t n_embd; uint32_t n_layer; }; struct llama_hparams { bool vocab_only; bool rope_finetuned; bool use_par_res; bool swin_norm; uint32_t n_vocab = 0; uint32_t n_ctx_train; // context size the model was trained on uint32_t n_embd; uint32_t n_embd_features = 0; uint32_t n_layer; uint32_t n_rot; uint32_t n_swa = 0; // sliding window attention (SWA) uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head uint32_t n_expert = 0; uint32_t n_expert_used = 0; uint32_t n_vocab_type = 0; // for BERT-style token types uint32_t n_rel_attn_bkts = 0; // for WavTokenizer struct llama_hparams_posnet posnet; struct llama_hparams_convnext convnext; std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr; std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr; std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr; std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {}; std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers; uint32_t n_layer_dense_lead = 0; uint32_t n_lora_q = 0; uint32_t n_lora_kv = 0; uint32_t n_ff_exp = 0; uint32_t n_ff_shexp = 0; uint32_t n_expert_shared = 0; uint32_t n_norm_groups = 0; float expert_weights_scale = 0.0; bool expert_weights_norm = false; uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE; float f_norm_eps; float f_norm_rms_eps; float f_norm_group_eps; float f_attn_logit_softcapping = 50.0f; float f_final_logit_softcapping = 30.0f; // for RWKV uint32_t rescale_every_n_layers = 0; uint32_t time_mix_extra_dim = 0; uint32_t time_decay_extra_dim = 0; uint32_t wkv_head_size = 0; float rope_attn_factor = 1.0f; float rope_freq_base_train; float rope_freq_scale_train; uint32_t n_ctx_orig_yarn; float rope_yarn_log_mul; std::array<int, 4> rope_sections; // for State Space Models uint32_t ssm_d_conv = 0; uint32_t ssm_d_inner = 0; uint32_t ssm_d_state = 0; uint32_t ssm_dt_rank = 0; bool ssm_dt_b_c_rms = false; float f_clamp_kqv = 0.0f; float f_max_alibi_bias = 0.0f; float f_logit_scale = 0.0f; // Additional scale factors (Granite/Granite MoE) float f_residual_scale = 0.0f; float f_embedding_scale = 0.0f; float f_attention_scale = 0.0f; bool causal_attn = true; bool use_alibi = false; bool attn_soft_cap = false; // needed by encoder-decoder models (e.g. T5, FLAN-T5) // ref: https://github.com/ggerganov/llama.cpp/pull/8141 llama_token dec_start_token_id = LLAMA_TOKEN_NULL; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; uint32_t n_head(uint32_t il = 0) const; uint32_t n_head_kv(uint32_t il = 0) const; uint32_t n_ff(uint32_t il = 0) const; uint32_t n_gqa(uint32_t il = 0) const; // dimension of key embeddings across all k-v heads uint32_t n_embd_k_gqa(uint32_t il = 0) const; // dimension of value embeddings across all k-v heads uint32_t n_embd_v_gqa(uint32_t il = 0) const; // dimension of the rolling state embeddings // corresponds to Mamba's conv_states size or RWKV's token_shift states size uint32_t n_embd_k_s() const; // dimension of the recurrent state embeddings uint32_t n_embd_v_s() const; // Block skip connection bool n_bskcn(uint32_t n, uint32_t il) const; // cross attention layers bool cross_attention_layers(uint32_t il) const; }; static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");