package convert import "github.com/ollama/ollama/llm" type qwen2Model struct { ModelParameters MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` HiddenSize uint32 `json:"hidden_size"` HiddenLayers uint32 `json:"num_hidden_layers"` IntermediateSize uint32 `json:"intermediate_size"` NumAttentionHeads uint32 `json:"num_attention_heads"` NumKeyValueHeads uint32 `json:"num_key_value_heads"` RopeTheta float32 `json:"rope_theta"` RopeScaling struct { Type string `json:"type"` Factor ropeFactor `json:"factor"` OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"` } `json:"rope_scaling"` RMSNormEPS float32 `json:"rms_norm_eps"` } var _ ModelConverter = (*qwen2Model)(nil) func (q *qwen2Model) KV(t *Tokenizer) llm.KV { kv := q.ModelParameters.KV(t) kv["general.architecture"] = "qwen2" kv["qwen2.block_count"] = q.HiddenLayers kv["qwen2.context_length"] = q.MaxPositionEmbeddings kv["qwen2.embedding_length"] = q.HiddenSize kv["qwen2.feed_forward_length"] = q.IntermediateSize kv["qwen2.attention.head_count"] = q.NumAttentionHeads kv["qwen2.attention.head_count_kv"] = q.NumKeyValueHeads kv["qwen2.rope.freq_base"] = q.RopeTheta kv["qwen2.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS switch q.RopeScaling.Type { case "": // no scaling case "yarn": kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor default: panic("unknown rope scaling type") } return kv } func (q *qwen2Model) Tensors(ts []Tensor) []llm.Tensor { var out []llm.Tensor for _, t := range ts { out = append(out, llm.Tensor{ Name: t.Name(), Kind: t.Kind(), Shape: t.Shape(), WriterTo: t, }) } return out } func (p *qwen2Model) Replacements() []string { return []string{ "lm_head", "output", "model.embed_tokens", "token_embd", "model.layers", "blk", "input_layernorm", "attn_norm", "self_attn.k_proj", "attn_k", "self_attn.v_proj", "attn_v", "self_attn.q_proj", "attn_q", "self_attn.o_proj", "attn_output", "mlp.down_proj", "ffn_down", "mlp.gate_proj", "ffn_gate", "mlp.up_proj", "ffn_up", "post_attention_layernorm", "ffn_norm", "model.norm", "output_norm", } }