package nn import ( "fmt" "github.com/ollama/ollama/kvcache" "github.com/ollama/ollama/ml" ) // Attention implements scaled dot-product attention for transformer models: // Attention(Q, K, V) = softmax(QK^T/√d_k)V // // Parameters: // - ctx: Context for tensor operations // - query: Query tensor (Q) with shape [d_k, heads, seq_len_q] // - key: Key tensor (K) with shape [d_k, kv_heads, seq_len_k], can be nil to read from cache only // - value: Value tensor (V) with shape [d_v, kv_heads, seq_len_k], can be nil to read from cache only // - scale: Scaling factor, typically 1/√d_k where d_k is the key dimension // - cache: KV cache to store key/value and get past history, can be nil to only use provided key/value // // Returns: // // Attention output with shape [d_v, heads, seq_len_q] func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor { if key != nil && value != nil { if query.Dim(0) != key.Dim(0) { panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0))) } if key.Dim(1) != value.Dim(1) { panic(fmt.Errorf("kv_heads in attention operation does not match between key(%v) and value(%v)", key.Dim(1), value.Dim(1))) } if key.Dim(2) != value.Dim(2) { panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2))) } if cache != nil { cache.Put(ctx, key, value) } } else if cache == nil { panic("key & value tensors must be provided if cache is nil") } var mask ml.Tensor if cache != nil { key, value, mask = cache.Get(ctx) } // Only use the fast SDPA implementation if we have a cache, since that's what // will do any expected backend-specific transformations for us if sdpa, ok := query.(ml.ScaledDotProductAttention); ok && cache != nil { return sdpa.ScaledDotProductAttention(ctx, key, value, mask, scale) } else { query = query.Permute(ctx, 0, 2, 1, 3) key = key.Permute(ctx, 0, 2, 1, 3) value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx) kq := key.MulmatFullPrec(ctx, query) kq = kq.Scale(ctx, scale) if mask != nil { kq = kq.Add(ctx, mask) } kq = kq.Softmax(ctx) kqv := value.Mulmat(ctx, kq) return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) } }