Files
ollama/ml/backend/ggml/ggml.go
Michael Yang 1a19df1f3a update vendored llama.cpp and ggml (#11823)
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch

This will be redone once my branch is merged upstream in llama.cpp

* feat: Update all patches

There are a number that are no longer needed at all:

- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
    overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream

* feat: Sync llama.cpp and ggml

* fix: Update rsync-filter for all moved/new/removed files

* fix: Add files missing from sync

* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs

* fix: Add ggml files missing from sync

* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files

* fix: Remove mtmd main cpp files

* fix: Add missing include in sampling_ext.cpp

* fix: Update llama.go to use mtmd instead of clip/llava

* fix: Add patch for mtmd_input_text

* chore: Ignore *.patched in the patch directory

* fix: Fix support for arch-specific ggml-cpu source files with new arrangement

In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:

1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units

This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:

1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory

* fix: Use mtmd_helper to correctly load the bitmap for the image

* fix: Apply patch for mtmd_text_input

* fix: Add missing stb to llama.cpp rsync-filter

* fix: Add sync'ed stb vendored header

* fix: Use c++17 and include vendor for go wrapper modules

* fix: Update patch 0015 for upstream implementation of uuid

* feat: Bump to the latest tip of the branch

* fix: Update patches for bump

* feat: Bump back to the cenral repo and point at the latest master

This includes granite 4 and a number of other model architectures!

* fix: Revert changes to ggml export GPU UUID patch

* fix: Add patch for GGML_VERSION and GGML_COMMIT constants

* feat: Sync all patched code

* build: Include cmake/common.cmake in ggml sync

* build: Add top-level include for GNUINstallDirs in CMakeLists.txt

This is used to populate CMAKE_INSTALL_BINDIR

* fix: Add a patch to avoid power throttling API on non-msvc windows builds

* fix: Sync patch changes for ggml-cpu.c

* feat: Bump llama.cpp to 4a4f42

This picks up support for Kimi K2 and PLaMO-2

* feat: Sync llama.cpp

* fix: Handle multi-chunk image encodings from mtmd

* fix: Re-number patches after merge with `main`

* feat: Bump to 41e78c in the makefile

* fix: Fix Solar and argsort/copy patches after bump

* fix: Remove Gemma3n CUDA Graphs patch

It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741

* feat: Sync llama.cpp / ggml after latest bump

* build: Remove unnecessary CFLAGS definitions in cpu.go

* fix: Remove unnecessary additions in the rsync-filter

* fix: Remove unused vendored code for chat template parsing

* Revert "fix: Remove Gemma3n CUDA Graphs patch"

This reverts commit d724caced3.

* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes

https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394

* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n

* unwind mxfp4 patch

Prepare to bump ggml with their impl for mxfp4

* bump

* fix windows build error

* Convert tensors at load time

Repack the mxfp4 tensors as ggmls kernels expect them to be.

* convert mlp bf16 to f32

* buffer the conversion better

* reshape earlier

* openai swiglu

* add ids

* split qkv, gate_up

* fix nested alt tags

* fast attention

* remove debug messages

* fix lint

* remove redundant test

* remap values only if source/target are different

* add back i32->i32 copy

* refactor cpu quants

* clean up vendor

* update patch instructions

* clean up patches

* remove webgpu

* update mem

* also handle gpt-oss

* revert convert changes

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-14 14:42:58 -07:00

1559 lines
40 KiB
Go

package ggml
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"
import (
"context"
"fmt"
"io"
"log/slog"
"maps"
"os"
"runtime"
"slices"
"strconv"
"strings"
"sync"
"sync/atomic"
"unicode"
"unsafe"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"github.com/ollama/ollama/ml/nn/rope"
"golang.org/x/sync/errgroup"
)
var (
cpus, accels, gpus []C.ggml_backend_dev_t
backends map[C.ggml_backend_dev_t]C.ggml_backend_t
)
var initDevices = sync.OnceFunc(func() {
ggml.OnceLoad()
backends = make(map[C.ggml_backend_dev_t]C.ggml_backend_t)
for i := range C.ggml_backend_dev_count() {
d := C.ggml_backend_dev_get(i)
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
if len(cpus) == 0 {
// only the first cpu device should be used
cpus = append(cpus, d)
}
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
accels = append(accels, d)
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
gpus = append(gpus, d)
}
backends[d] = C.ggml_backend_dev_init(d, nil)
}
})
type Backend struct {
// modelPath is the location of the model data
modelPath string
meta *fsggml.GGML
// tensorLoadTargets maps from the name of the tensor in the file
// to the name that is used by the model definition
tensorLoadTargets map[string][]string
sched C.ggml_backend_sched_t
schedBackends []C.ggml_backend_t
schedBufts []C.ggml_backend_buffer_type_t
tensors map[string]*C.struct_ggml_tensor
// input is the backend used for inputs
input C.ggml_backend_buffer_type_t
// layers is the backend used for repeating layers
layers map[int]C.ggml_backend_buffer_type_t
// requiredMemory is the cumulative memory allocations needed by the backend
requiredMemory *ml.BackendMemory
// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
btDeviceMemory map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory
flashAttention bool
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
// weightBuffers are the GGML contexts and buffers for allocating weights
weightBuffers map[*C.struct_ggml_context]C.ggml_backend_buffer_t
}
func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
meta, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
slog.Info(
"",
"architecture", meta.KV().Architecture(),
"file_type", meta.KV().FileType(),
"name", meta.KV().String("general.name"),
"description", meta.KV().String("general.description"),
"num_tensors", len(meta.Tensors().Items()),
"num_key_values", len(meta.KV()),
)
initDevices()
var requiredMemory ml.BackendMemory
btDeviceMemory := make(map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory)
type deviceBufferType struct {
d C.ggml_backend_dev_t
bts []C.ggml_backend_buffer_type_t
}
blocks := int(meta.KV().BlockCount())
// create list of buffer types for the cpu
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
for _, d := range append(accels, append(gpus, cpus...)...) {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d))
btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
}
}
requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d))
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props)
requiredMemory.CPU.ID = C.GoString(props.id)
requiredMemory.CPU.Weights = make([]ml.Memory, blocks+1)
requiredMemory.CPU.Cache = make([]ml.Memory, blocks+1)
// create list of buffer types for each gpu
var gpuDeviceBufferTypes []deviceBufferType
requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus))
for i, d := range gpus {
bt := C.ggml_backend_dev_buffer_type(d)
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
d: d,
bts: append([]C.ggml_backend_buffer_type_t{bt}, cpuDeviceBufferType.bts...),
})
btDeviceMemory[bt] = &requiredMemory.GPUs[i]
requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(d, &props)
requiredMemory.GPUs[i].ID = C.GoString(props.id)
requiredMemory.GPUs[i].Weights = make([]ml.Memory, blocks+1)
requiredMemory.GPUs[i].Cache = make([]ml.Memory, blocks+1)
}
useDefaultSplit := true
for _, s := range params.TensorSplit {
if s != 0 {
useDefaultSplit = false
break
}
}
// calculate splits
splits := make([]float32, len(gpus))
if useDefaultSplit {
// default: split on free memory
for i := range splits {
var free, total C.size_t
C.ggml_backend_dev_memory(gpus[i], &free, &total)
splits[i] = float32(free)
}
} else {
splits = params.TensorSplit
}
var sum float32
// cumulative sum of all splits
for i := range splits {
sum += splits[i]
splits[i] = sum
}
// normalize splits
for i := range splits {
splits[i] /= sum
}
// inputs always use cpu
input := cpuDeviceBufferType
// define a range of gpu layers. anything outside of this range is assigned to the cpu
gpuRangeStart := max(0, blocks-params.NumGPULayers)
gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
assignLayer := func(i int) deviceBufferType {
if i < gpuRangeStart || i >= gpuRangeStop {
return cpuDeviceBufferType
}
index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
if index < 0 || index >= len(gpuDeviceBufferTypes) {
return cpuDeviceBufferType
}
return gpuDeviceBufferTypes[index]
}
// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
layers := make([]deviceBufferType, blocks)
for i := range layers {
layers[i] = assignLayer(i)
}
// outputs are assigned iff allowed by splits and configured number of gpu layers
output := assignLayer(blocks)
maxTensors := len(meta.Tensors().Items())
maxTensors += 1
// each layer has at most 2 extra tensors for rope operations
maxTensors += blocks * 2
type tensor struct {
source *fsggml.Tensor
target string
}
// some tensors are mapped to different names so keep a list
targets := make(map[string][]string)
// contexts are shared by tensors of the same buffer type
ctxs := make(map[C.ggml_backend_buffer_type_t]*C.struct_ggml_context)
createTensor := func(t tensor, bts []C.ggml_backend_buffer_type_t, layer int) *C.struct_ggml_tensor {
for _, bt := range bts {
if _, ok := ctxs[bt]; !ok {
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
no_alloc: true,
})
}
targets[t.source.Name] = append(targets[t.source.Name], t.target)
name := t.source.Name
if t.target != "" {
name = t.target
}
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
return tt
}
kind := t.source.Kind
if t.source.Kind == 4 {
// transform raw mxfp4 stream to ggml mxfp4 format
kind = 39
} else if t.source.Kind == uint32(fsggml.TensorTypeBF16) && strings.HasSuffix(t.source.Name, "_exps.bias") {
// transform "_exps.bias" from bf16 to fp32; add_ids only supports fp32 tensors
kind = uint32(fsggml.TensorTypeF32)
}
tt := C.ggml_new_tensor(ctxs[bt], kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
C.ggml_set_name(tt, cname)
slog.Log(context.TODO(), logutil.LevelTrace, "created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
if layer == -1 {
// Assume that InputWeights can be allocated - they're always in system memory and can't be moved in any case
requiredMemory.InputWeights.Status = ml.Allocated
requiredMemory.InputWeights.Size += uint64(size)
} else {
btDeviceMemory[bt].Weights[layer].Size += uint64(size)
}
//nolint:staticcheck // TODO: check if buffer type supports this tensor
return tt
}
return nil
}
contains := func(s string, parts ...string) bool {
split := strings.Split(s, ".")
for _, part := range parts {
if slices.Contains(split, part) {
return true
}
}
return false
}
for _, t := range meta.Tensors().Items() {
switch {
case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
createTensor(tensor{source: t}, input.bts, -1)
if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
}
case contains(t.Name, "cls", "output", "output_norm",
"altup_proj", "altup_unembd_proj",
"per_layer_token_embd", "per_layer_model_proj", "per_layer_proj_norm"):
createTensor(tensor{source: t}, output.bts, blocks)
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
// TODO: assign vision tensors to the gpu if possible
createTensor(tensor{source: t}, output.bts, blocks)
case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
// these tensors should be repeated per layer
for i, layer := range layers {
createTensor(tensor{
source: t,
target: "blk." + strconv.Itoa(i) + "." + t.Name,
}, layer.bts, i)
}
default:
layerIndex := -1
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
if i, err := strconv.Atoi(fields[0]); err == nil {
layerIndex = i
}
}
if layerIndex >= 0 {
createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex)
} else {
// load all other tensors on the cpu
createTensor(tensor{source: t}, input.bts, -1)
}
}
}
// allocate buffers for each context
bbs := make(map[*C.struct_ggml_context]C.ggml_backend_buffer_t, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
for i := range btDeviceMemory[bt].Weights {
if btDeviceMemory[bt].Weights[i].Size != 0 {
if b != nil {
btDeviceMemory[bt].Weights[i].Status = ml.Allocated
} else {
btDeviceMemory[bt].Weights[i].Status = ml.Failed
}
}
}
if b == nil {
for _, b := range bbs {
C.ggml_backend_buffer_free(b)
}
for _, ctx := range ctxs {
C.ggml_free(ctx)
}
panic(ml.ErrNoMem{BackendMemory: requiredMemory})
}
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = b
}
// Mimic llama runner logs summarizing layers and memory
gpuLayers := 0
for _, layer := range layers {
if C.ggml_backend_dev_type(layer.d) == C.GGML_BACKEND_DEVICE_TYPE_GPU {
gpuLayers++
}
}
slog.Info(fmt.Sprintf("offloading %d repeating layers to GPU", gpuLayers))
switch C.ggml_backend_dev_type(output.d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
slog.Info("offloading output layer to CPU")
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
slog.Info("offloading output layer to GPU")
gpuLayers++
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
slog.Info("offloading output layer to ACCEL")
}
slog.Info(fmt.Sprintf("offloaded %d/%d layers to GPU", gpuLayers, len(layers)+1))
for bs := range maps.Values(bbs) {
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
// map tensor names to tensors for easy lookup later
tensors := make(map[string]*C.struct_ggml_tensor)
for _, c := range ctxs {
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
tensors[C.GoString(C.ggml_get_name(t))] = t
}
}
// map devices to backend buffer types so new tensors can be assigned to the correct device
deviceBufferTypes := make(map[C.ggml_backend_dev_t]C.ggml_backend_buffer_type_t)
// create backends and buffer types used for the compute graph scheduler
var schedBackends []C.ggml_backend_t
var schedBufts []C.ggml_backend_buffer_type_t
for _, d := range append(gpus, append(accels, cpus...)...) {
b := backends[d]
bt := C.ggml_backend_get_default_buffer_type(b)
deviceBufferTypes[d] = bt
schedBackends = append(schedBackends, b)
schedBufts = append(schedBufts, bt)
if C.ggml_backend_is_cpu(b) {
// set number of threads for cpu backend
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
}
}
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
return &Backend{
modelPath: modelPath,
flashAttention: params.FlashAttention,
meta: meta,
tensorLoadTargets: targets,
tensors: tensors,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
C._Bool(false),
C._Bool(false),
),
schedBackends: schedBackends,
schedBufts: schedBufts,
input: deviceBufferTypes[input.d],
layers: func() map[int]C.ggml_backend_buffer_type_t {
m := make(map[int]C.ggml_backend_buffer_type_t)
for i, layer := range layers {
m[i] = deviceBufferTypes[layer.d]
}
return m
}(),
requiredMemory: &requiredMemory,
btDeviceMemory: btDeviceMemory,
maxGraphNodes: maxGraphNodes,
weightBuffers: bbs,
}, nil
}
func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Close() {
if b == nil {
return
}
for ctx, b := range b.weightBuffers {
C.ggml_backend_buffer_free(b)
C.ggml_free(ctx)
}
C.ggml_backend_sched_free(b.sched)
}
func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
var doneBytes atomic.Uint64
totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
for _, t := range b.meta.Tensors().Items() {
t := t
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
for i := range tts {
target := b.tensorLoadTargets[t.Name][i]
if target == "" {
target = t.Name
}
tt, ok := b.tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
tts[i] = tt
}
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
// seeking around within an FD shared between all goroutines.
file, err := os.Open(b.modelPath)
if err != nil {
slog.Warn("file open error", "file", b.modelPath, "error", err)
return err
}
defer file.Close()
sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size()))
if t.Kind == 4 && tts[0]._type == 39 {
// source is mxfp4, target is ggml mxfp4
const BS = 17 // MXFP4 block size
bts := make([]byte, 8*BS*format.KibiByte) // ~128k block aligned
var s uint64
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
for j := range n / BS {
for i := 1; i < BS; i++ {
// swap nibbles
t_lo := bts[j*BS+i] & 0x0F
t_hi := bts[j*BS+i] & 0xF0
bts[j*BS+i] = (t_lo << 4) | (t_hi >> 4)
}
// transform aaaa...bbbb... to abababab...
oi := 0
tmp := [16]byte{}
for i := 1; i < 9; i++ {
blk_a0 := bts[j*BS+i] & 0xF0
blk_a1 := bts[j*BS+i] << 4
blk_b0 := bts[j*BS+i+8] >> 4
blk_b1 := bts[j*BS+i+8] & 0x0F
// swap once more
out0 := blk_a0 | blk_b0
out1 := blk_a1 | blk_b1
out_h0 := out0 & 0xF0
out_l0 := out0 & 0x0F
out_h1 := out1 & 0xF0
out_l1 := out1 & 0x0F
out0 = (out_h0 >> 4) | (out_l0 << 4)
out1 = (out_h1 >> 4) | (out_l1 << 4)
tmp[oi] = out0
oi++
tmp[oi] = out1
oi++
}
for i := range tmp {
bts[j*BS+i+1] = tmp[i]
}
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
} else if strings.HasSuffix(t.Name, "_exps.bias") && t.Kind == 30 && tts[0]._type == 0 {
// source is bf16, target is ggml fp32
// data is bf16 but we need to convert to fp32
bts := make([]byte, 128*format.KibiByte)
var e uint64
for e < t.Elements() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Elements()-e)*2)])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
fp32 := ConvertToF32(bts, uint32(fsggml.TensorTypeBF16), uint64(n/2))
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&fp32[0]), C.size_t(e*4), C.size_t(n*2))
}
e += uint64(n / 2)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
}
bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
})
}
if err := g.Wait(); err != nil {
return err
}
return nil
}
func (b *Backend) BackendMemory() ml.BackendMemory {
return *b.requiredMemory
}
func (b *Backend) Config() fs.Config {
return b.meta.KV()
}
func (b *Backend) Get(name string) ml.Tensor {
if t, ok := b.tensors[name]; ok {
return &Tensor{b: b, t: t}
}
return nil
}
func (b *Backend) NewContext() ml.Context {
return b.NewContextSize(b.maxGraphNodes)
}
func (b *Backend) NewContextSize(n int) ml.Context {
if n > b.maxGraphNodes {
panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
}
var allocatedBuffers []C.ggml_backend_buffer_t
return &Context{
b: b,
maxGraphNodes: n,
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
no_alloc: true,
}),
allocatedBuffers: &allocatedBuffers,
layer: -1,
}
}
func (b *Backend) CacheConfig() ml.CacheConfig {
if b.flashAttention {
return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
} else {
return ml.CacheConfig{CachePadding: 32, PermutedV: true}
}
}
type Context struct {
b *Backend
ctx *C.struct_ggml_context
graph *C.struct_ggml_cgraph
// buft is the buffer type used for new tensors
buft C.ggml_backend_buffer_type_t
// allocatedBuffers are buffers for tensors that we have allocated in this context
// so that we can free them when we close the context
allocatedBuffers *[]C.ggml_backend_buffer_t
// maxGraphNodes is the maximum allowed number of graph nodes in this context
maxGraphNodes int
// layer is the graph layer that this context is allocating for - assumed to be cache
layer int
}
func (c *Context) Input() ml.Context {
if c.b.input != nil {
return &Context{
b: c.b,
ctx: c.ctx,
buft: c.b.input,
allocatedBuffers: c.allocatedBuffers,
maxGraphNodes: c.maxGraphNodes,
layer: -1,
}
}
return c
}
func (c *Context) Layer(i int) ml.Context {
if buft, ok := c.b.layers[i]; ok {
return &Context{
b: c.b,
ctx: c.ctx,
buft: buft,
allocatedBuffers: c.allocatedBuffers,
maxGraphNodes: c.maxGraphNodes,
layer: i,
}
}
return c
}
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
if c.graph == nil {
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
}
for _, tensor := range tensors {
C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
}
return c
}
func (c *Context) Compute(tensors ...ml.Tensor) {
if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
panic(fmt.Errorf("error computing ggml graph: %v", status))
}
C.ggml_backend_sched_reset(c.b.sched)
needSync := true
sync := func() {
if needSync {
C.ggml_backend_sched_synchronize(c.b.sched)
needSync = false
}
}
for _, t := range tensors {
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
t.(*Tensor).sync = sync
}
}
}
func (c *Context) Reserve() {
reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph)
slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
for _, bt := range c.b.schedBufts {
c.b.btDeviceMemory[bt].Graph = ml.Memory{}
}
for i := range c.b.schedBackends {
bufferStatus := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])
graph := &c.b.btDeviceMemory[c.b.schedBufts[i]].Graph
graph.Size += uint64(bufferStatus.size)
if bufferStatus.allocated && graph.Status != ml.Failed {
graph.Status = ml.Allocated
} else {
graph.Status = ml.Failed
}
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
"size", format.HumanBytes2(uint64(bufferStatus.size)))
}
if !reserved {
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
}
}
func (c *Context) MaxGraphNodes() int {
return c.maxGraphNodes
}
func shapeToGGML(shape []int) *C.int64_t {
sh := make([]C.int64_t, len(shape))
for i, s := range shape {
sh[i] = C.int64_t(s)
}
return &sh[0]
}
func pad(length, pad C.size_t) C.size_t {
return ((length + pad - 1) / pad) * pad
}
func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
if c.buft == nil {
panic("set Input or Layer before creating tensors")
}
var cdtype uint32
switch dtype {
case ml.DTypeF32:
cdtype = C.GGML_TYPE_F32
case ml.DTypeF16:
cdtype = C.GGML_TYPE_F16
case ml.DTypeQ80:
cdtype = C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
cdtype = C.GGML_TYPE_Q4_0
case ml.DTypeI32:
cdtype = C.GGML_TYPE_I32
case ml.DTypeMXFP4:
cdtype = C.GGML_TYPE_MXFP4
default:
panic("unsupported dtype")
}
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
} else if len(shape) > 4 {
panic("unsupported number of dimensions")
}
for _, dim := range shape {
if dim < 1 {
panic("invalid shape")
}
}
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
if c.layer >= 0 {
cache := &c.b.btDeviceMemory[c.buft].Cache[c.layer]
cache.Size += uint64(size)
if b != nil {
cache.Status = ml.Allocated
} else {
cache.Status = ml.Failed
}
}
if b == nil {
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
}
*c.allocatedBuffers = append(*c.allocatedBuffers, b)
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}
}
func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
return c.newTensor(dtype, shape)
}
func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t := c.newTensor(dtype, shape)
C.ggml_set_zero(t.(*Tensor).t)
return t
}
func checkShape[S ~[]E, E any](s S, shape ...int) {
n := len(s)
if n == 0 {
return
}
for _, v := range shape {
n /= v
}
if n != 1 {
panic(fmt.Errorf("invalid shape: %v", shape))
}
}
func (c *Context) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
checkShape(s, shape...)
t := c.newTensor(ml.DTypeF32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t
}
func (c *Context) FromIntSlice(s []int32, shape ...int) ml.Tensor {
checkShape(s, shape...)
t := c.newTensor(ml.DTypeI32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t
}
func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
switch dtype {
case ml.DTypeF32:
// ggml_arange creates a float32 tensor
return &Tensor{
b: c.b,
t: C.ggml_arange(c.ctx, C.float(start), C.float(stop), C.float(step)),
}
case ml.DTypeI32:
// ggml_cast does not support float32 to int32 conversion
arange := make([]int32, 0, int((stop-start)/step))
for i := start; i < stop; i += step {
arange = append(arange, int32(i))
}
return c.Input().FromIntSlice(arange, len(arange))
default:
panic("unsupported dtype for arange")
}
}
func (c *Context) Close() {
if c != nil {
for _, b := range *c.allocatedBuffers {
C.ggml_backend_buffer_free(b)
}
*c.allocatedBuffers = nil
C.ggml_free(c.ctx)
}
}
type Tensor struct {
b *Backend
t *C.struct_ggml_tensor
sync func()
}
func (t *Tensor) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
slog.Any("shape", t.Shape()),
)
}
func (t *Tensor) Dim(n int) int {
return int(t.t.ne[n])
}
func (t *Tensor) Stride(n int) int {
return int(t.t.nb[n])
}
func (t *Tensor) Shape() []int {
shape := make([]int, C.ggml_n_dims(t.t))
for i := range shape {
shape[i] = t.Dim(i)
}
return shape
}
func (t *Tensor) Bytes() (data []byte) {
if t.sync != nil {
data = make([]byte, C.ggml_nbytes(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
}
func (t *Tensor) Floats() (data []float32) {
if t.sync != nil {
data = make([]float32, C.ggml_nelements(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
}
func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
return ml.DTypeF32
case C.GGML_TYPE_F16:
return ml.DTypeF16
case C.GGML_TYPE_Q8_0:
return ml.DTypeQ80
case C.GGML_TYPE_Q4_0:
return ml.DTypeQ40
case C.GGML_TYPE_I32:
return ml.DTypeI32
case C.GGML_TYPE_MXFP4:
return ml.DTypeMXFP4
default:
return ml.DTypeOther
}
}
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_neg(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Sub(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sub(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
if dim < 0 || dim >= C.GGML_MAX_DIMS {
panic("invalid dimension")
}
shape := make([]C.int64_t, C.GGML_MAX_DIMS)
for i := range C.GGML_MAX_DIMS {
if i == dim {
shape[i] = C.int64_t(t.Dim(i) * n)
} else {
shape[i] = C.int64_t(t.Dim(i))
}
}
tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
return &Tensor{
b: t.b,
t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
}
}
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
if len(s) > 0 {
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
}
return t
}
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
}
}
func (t *Tensor) Contiguous(ctx ml.Context, shape ...int) ml.Tensor {
switch len(shape) {
case 0:
return &Tensor{
b: t.b,
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
}
case 1:
return &Tensor{
b: t.b,
t: C.ggml_cont_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
}
case 2:
return &Tensor{
b: t.b,
t: C.ggml_cont_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_cont_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
}
case 4:
return &Tensor{
b: t.b,
t: C.ggml_cont_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
return &Tensor{
b: t.b,
t: mul,
}
}
func (t *Tensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul_mat_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
}
}
func (t *Tensor) AddID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_add_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
if b != nil {
tt = C.ggml_add(ctx.(*Context).ctx, tt, b.(*Tensor).t)
}
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
tt := C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
} else if shape[3] != 0 {
panic("cuda does not support 4d tensors")
}
return &Tensor{
b: t.b,
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
b: t.b,
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
b: t.b,
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
}
case 2:
return &Tensor{
b: t.b,
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
}
case 4:
return &Tensor{
b: t.b,
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
}
}
func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sin(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cos(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sigmoid_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
b: t.b,
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]),
C.size_t(shape[1]),
C.size_t(offset)),
}
case 5:
return &Tensor{
b: t.b,
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
C.size_t(shape[1]), C.size_t(shape[3]),
C.size_t(offset)),
}
case 7:
return &Tensor{
b: t.b,
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
C.size_t(offset)),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
// Default options
opts := rope.Options{
Factors: &Tensor{},
OriginalContextLength: 131072,
ExtrapolationFactor: 0.,
AttentionFactor: 1.,
BetaFast: 32.,
BetaSlow: 1.,
}
// Apply any provided options
for _, option := range options {
option(&opts)
}
dequant := t.t
if C.ggml_is_quantized(t.t._type) {
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
}
return &Tensor{
b: t.b,
t: C.ggml_rope_ext(
ctx.(*Context).ctx,
dequant,
positions.(*Tensor).t,
opts.Factors.(*Tensor).t,
C.int(ropeDim),
C.int(opts.Type),
C.int(opts.OriginalContextLength),
C.float(ropeBase),
C.float(ropeScale),
C.float(opts.ExtrapolationFactor),
C.float(opts.AttentionFactor),
C.float(opts.BetaFast),
C.float(opts.BetaSlow),
),
}
}
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
}
}
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) QuickGELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_gelu_quick_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) RELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SwiGLU(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_swiglu_oai(ctx.(*Context).ctx, t.t, up.(*Tensor).t, C.float(alpha), C.float(limit)),
}
}
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
}
}
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
}
}
func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
var tt *C.struct_ggml_tensor
switch len(strides) {
case 0:
tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
case 1:
tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
default:
panic("unsupported number of dimensions")
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sinks ml.Tensor, scale float64) ml.Tensor {
var kqMask *C.struct_ggml_tensor
if mask != nil {
kqMask = mask.(*Tensor).t
}
query := t.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
if t.b.flashAttention {
value = value.Permute(ctx, 0, 2, 1, 3)
kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
if sinks != nil {
C.ggml_flash_attn_ext_add_sinks(kqv, sinks.(*Tensor).t)
}
C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
return &Tensor{b: t.b, t: kqv}
} else {
kq := key.MulmatFullPrec(ctx, query)
kq = &Tensor{
b: t.b,
t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
}
if sinks != nil {
C.ggml_soft_max_add_sinks(kq.(*Tensor).t, sinks.(*Tensor).t)
}
kqv := value.Mulmat(ctx, kq)
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
}
}
func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_dup(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
}
}
func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
}
}
func (t *Tensor) Mean(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mean(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Variance(ctx ml.Context) ml.Tensor {
return t.Add(ctx, t.Mean(ctx).Scale(ctx, -1)).
Sqr(ctx).
SumRows(ctx).
Scale(ctx, 1/float64(t.Dim(0)))
}
func (t *Tensor) Stddev(ctx ml.Context) ml.Tensor {
return t.Variance(ctx).Sqrt(ctx)
}
func (t *Tensor) Sqr(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sqr(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sqrt(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Clamp(ctx ml.Context, min, max float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_clamp(ctx.(*Context).ctx, t.t, C.float(min), C.float(max)),
}
}
func (c Context) FromBytes(dtype ml.DType, s []uint8, shape ...int) ml.Tensor {
// Unchecked to handle quantized types
t := c.newTensor(dtype, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t
}