Merge pull request #510 from underlines/feature/color_space_conversion

Feature/color space conversion
This commit is contained in:
Vic P. 2024-09-01 00:34:46 +07:00 committed by GitHub
commit a9f869e491
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 176 additions and 4 deletions

142
README.md
View File

@ -1,3 +1,4 @@
![demo-gif](demo.gif)
@ -173,6 +174,147 @@ options:
Looking for a CLI mode? Using the -s/--source argument will make the run program in cli mode.
### Webcam mode on Windows 11 using WSL2 Ubuntu
If you want to use WSL2 on Windows 11 you will notice, that Ubuntu WSL2 doesn't come with USB-Webcam support in the Kernel. You need to do two things: Compile the Kernel with the right modules integrated and forward your USB Webcam from Windows to Ubuntu with the usbipd app. Here are detailed Steps:
This tutorial will guide you through the process of setting up WSL2 Ubuntu with USB webcam support, rebuilding the kernel, and preparing the environment for the Deep-Live-Cam project.
#### 1. Install WSL2 Ubuntu
Install WSL2 Ubuntu from the Microsoft Store or using PowerShell:
#### 2. Enable USB Support in WSL2
1. Install the USB/IP tool for Windows:
[https://learn.microsoft.com/en-us/windows/wsl/connect-usb](https://learn.microsoft.com/en-us/windows/wsl/connect-usb)
2. In Windows PowerShell (as Administrator), connect your webcam to WSL:
```powershell
usbipd list
usbipd bind --busid x-x # Replace x-x with your webcam's bus ID
usbipd attach --wsl --busid x-x # Replace x-x with your webcam's bus ID
```
You need to redo the above every time you reboot wsl or re-connect your webcam/usb device.
#### 3. Rebuild WSL2 Ubuntu Kernel with USB and Webcam Modules
Follow these steps to rebuild the kernel:
1. Start with this guide: [https://github.com/PINTO0309/wsl2_linux_kernel_usbcam_enable_conf](https://github.com/PINTO0309/wsl2_linux_kernel_usbcam_enable_conf)
2. When you reach the `sudo wget [github.com](http://github.com/)...PINTO0309` step, which won't work for newer kernel versions, follow this video instead or alternatively follow the video tutorial from the beginning:
[https://www.youtube.com/watch?v=t_YnACEPmrM](https://www.youtube.com/watch?v=t_YnACEPmrM)
Additional info: [https://askubuntu.com/questions/1413377/camera-not-working-in-cheese-in-wsl2](https://askubuntu.com/questions/1413377/camera-not-working-in-cheese-in-wsl2)
3. After rebuilding, restart WSL with the new kernel.
#### 4. Set Up Deep-Live-Cam Project
Within Ubuntu:
1. Clone the repository:
```bash
git clone [https://github.com/hacksider/Deep-Live-Cam](https://github.com/hacksider/Deep-Live-Cam)
```
2. Follow the installation instructions in the repository, including cuda toolkit 11.8, make 100% sure it's not cuda toolkit 12.x.
#### 5. Verify and Load Kernel Modules
1. Check if USB and webcam modules are built into the kernel:
```bash
zcat /proc/config.gz | grep -i "CONFIG_USB_VIDEO_CLASS"
```
2. If modules are loadable (m), not built-in (y), check if the file exists:
```bash
ls /lib/modules/$(uname -r)/kernel/drivers/media/usb/uvc/
```
3. Load the module and check for errors (optional if built-in):
```bash
sudo modprobe uvcvideo
dmesg | tail
```
4. Verify video devices:
```bash
sudo ls -al /dev/video*
```
#### 6. Set Up Permissions
1. Add user to video group and set permissions:
```bash
sudo usermod -a -G video $USER
sudo chgrp video /dev/video0 /dev/video1
sudo chmod 660 /dev/video0 /dev/video1
```
2. Create a udev rule for permanent permissions:
```bash
sudo nano /etc/udev/rules.d/81-webcam.rules
```
Add this content:
```
KERNEL=="video[0-9]*", GROUP="video", MODE="0660"
```
3. Reload udev rules:
```bash
sudo udevadm control --reload-rules && sudo udevadm trigger
```
4. Log out and log back into your WSL session.
5. Start Deep-Live-Cam with `python run.py --execution-provider cuda --max-memory 8` where 8 can be changed to the number of GB VRAM of your GPU has, minus 1-2GB. If you have a RTX3080 with 10GB I suggest adding 8GB. Leave some left for Windows.
#### Final Notes
- Steps 6 and 7 may be optional if the modules are built into the kernel and permissions are already set correctly.
- Always ensure you're using compatible versions of CUDA, ONNX, and other dependencies.
- If issues persist, consider checking the Deep-Live-Cam project's specific requirements and troubleshooting steps.
By following these steps, you should have a WSL2 Ubuntu environment with USB webcam support ready for the Deep-Live-Cam project. If you encounter any issues, refer back to the specific error messages and troubleshooting steps provided.
#### Troubleshooting CUDA Issues
If you encounter this error:
```
[ONNXRuntimeError] : 1 : FAIL : Failed to load library [libonnxruntime_providers_cuda.so](http://libonnxruntime_providers_cuda.so/) with error: libcufft.so.10: cannot open shared object file: No such file or directory
```
Follow these steps:
1. Install CUDA Toolkit 11.8 (ONNX 1.16.3 requires CUDA 11.x, not 12.x):
[https://developer.nvidia.com/cuda-11-8-0-download-archive](https://developer.nvidia.com/cuda-11-8-0-download-archive)
select: Linux, x86_64, WSL-Ubuntu, 2.0, deb (local)
2. Check CUDA version:
```bash
/usr/local/cuda/bin/nvcc --version
```
3. If the wrong version is installed, remove it completely:
[https://askubuntu.com/questions/530043/removing-nvidia-cuda-toolkit-and-installing-new-one](https://askubuntu.com/questions/530043/removing-nvidia-cuda-toolkit-and-installing-new-one)
4. Install CUDA Toolkit 11.8 again [https://developer.nvidia.com/cuda-11-8-0-download-archive](https://developer.nvidia.com/cuda-11-8-0-download-archive), select: Linux, x86_64, WSL-Ubuntu, 2.0, deb (local)
```bash
sudo apt-get -y install cuda-toolkit-11-8
```
## Want the Next Update Now?
If you want the latest and greatest build, or want to see some new great features, go to our [experimental branch](https://github.com/hacksider/Deep-Live-Cam/tree/experimental) and experience what the contributors have given.

View File

@ -1,16 +1,28 @@
from typing import Any
import cv2
import modules.globals # Import the globals to check the color correction toggle
def get_video_frame(video_path: str, frame_number: int = 0) -> Any:
capture = cv2.VideoCapture(video_path)
# Set MJPEG format to ensure correct color space handling
capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
# Only force RGB conversion if color correction is enabled
if modules.globals.color_correction:
capture.set(cv2.CAP_PROP_CONVERT_RGB, 1)
frame_total = capture.get(cv2.CAP_PROP_FRAME_COUNT)
capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
has_frame, frame = capture.read()
if has_frame and modules.globals.color_correction:
# Convert the frame color if necessary
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
capture.release()
if has_frame:
return frame
return None
return frame if has_frame else None
def get_video_frame_total(video_path: str) -> int:

View File

@ -17,6 +17,7 @@ keep_fps = None
keep_audio = None
keep_frames = None
many_faces = None
color_correction = None # New global variable for color correction toggle
nsfw_filter = None
video_encoder = None
video_quality = None

View File

@ -1,6 +1,8 @@
import numpy
import opennsfw2
from PIL import Image
import cv2 # Add OpenCV import
import modules.globals # Import globals to access the color correction toggle
from modules.typing import Frame
@ -10,10 +12,16 @@ MAX_PROBABILITY = 0.85
model = None
def predict_frame(target_frame: Frame) -> bool:
# Convert the frame to RGB before processing if color correction is enabled
if modules.globals.color_correction:
target_frame = cv2.cvtColor(target_frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(target_frame)
image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO)
global model
if model is None: model = opennsfw2.make_open_nsfw_model()
if model is None:
model = opennsfw2.make_open_nsfw_model()
views = numpy.expand_dims(image, axis=0)
_, probability = model.predict(views)[0]
return probability > MAX_PROBABILITY

View File

@ -49,6 +49,10 @@ def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
# Ensure the frame is in RGB format if color correction is enabled
if modules.globals.color_correction:
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
if modules.globals.many_faces:
many_faces = get_many_faces(temp_frame)
if many_faces:

View File

@ -93,6 +93,11 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C
many_faces_switch = ctk.CTkSwitch(root, text='Many faces', variable=many_faces_value, cursor='hand2', command=lambda: setattr(modules.globals, 'many_faces', many_faces_value.get()))
many_faces_switch.place(relx=0.6, rely=0.65)
# Add color correction toggle button
color_correction_value = ctk.BooleanVar(value=modules.globals.color_correction)
color_correction_switch = ctk.CTkSwitch(root, text='Fix Blueish Cam\n(force cv2 to use RGB instead of BGR)', variable=color_correction_value, cursor='hand2', command=lambda: setattr(modules.globals, 'color_correction', color_correction_value.get()))
color_correction_switch.place(relx=0.6, rely=0.70)
# nsfw_value = ctk.BooleanVar(value=modules.globals.nsfw_filter)
# nsfw_switch = ctk.CTkSwitch(root, text='NSFW filter', variable=nsfw_value, cursor='hand2', command=lambda: setattr(modules.globals, 'nsfw_filter', nsfw_value.get()))
# nsfw_switch.place(relx=0.6, rely=0.7)