Deep-Live-Cam/modules/face_analyser.py
pereiraroland26@gmail.com 53fc65ca7c Added ability to map faces
2024-09-10 05:40:55 +05:30

189 lines
6.4 KiB
Python

import os
import shutil
from typing import Any
import insightface
import cv2
import numpy as np
import modules.globals
from tqdm import tqdm
from modules.typing import Frame
from modules.cluster_analysis import find_cluster_centroids, find_closest_centroid
from modules.utilities import get_temp_directory_path, create_temp, extract_frames, clean_temp, get_temp_frame_paths
from pathlib import Path
FACE_ANALYSER = None
def get_face_analyser() -> Any:
global FACE_ANALYSER
if FACE_ANALYSER is None:
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=modules.globals.execution_providers)
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640))
return FACE_ANALYSER
def get_one_face(frame: Frame) -> Any:
face = get_face_analyser().get(frame)
try:
return min(face, key=lambda x: x.bbox[0])
except ValueError:
return None
def get_many_faces(frame: Frame) -> Any:
try:
return get_face_analyser().get(frame)
except IndexError:
return None
def has_valid_map() -> bool:
for map in modules.globals.souce_target_map:
if "source" in map and "target" in map:
return True
return False
def default_source_face() -> Any:
for map in modules.globals.souce_target_map:
if "source" in map:
return map['source']['face']
return None
def simplify_maps() -> Any:
centroids = []
faces = []
for map in modules.globals.souce_target_map:
if "source" in map and "target" in map:
centroids.append(map['target']['face'].normed_embedding)
faces.append(map['source']['face'])
modules.globals.simple_map = {'source_faces': faces, 'target_embeddings': centroids}
return None
def add_blank_map() -> Any:
try:
max_id = -1
if len(modules.globals.souce_target_map) > 0:
max_id = max(modules.globals.souce_target_map, key=lambda x: x['id'])['id']
modules.globals.souce_target_map.append({
'id' : max_id + 1
})
except ValueError:
return None
def get_unique_faces_from_target_image() -> Any:
try:
modules.globals.souce_target_map = []
target_frame = cv2.imread(modules.globals.target_path)
many_faces = get_many_faces(target_frame)
i = 0
for face in many_faces:
x_min, y_min, x_max, y_max = face['bbox']
modules.globals.souce_target_map.append({
'id' : i,
'target' : {
'cv2' : target_frame[int(y_min):int(y_max), int(x_min):int(x_max)],
'face' : face
}
})
i = i + 1
except ValueError:
return None
def get_unique_faces_from_target_video() -> Any:
try:
modules.globals.souce_target_map = []
frame_face_embeddings = []
face_embeddings = []
print('Creating temp resources...')
clean_temp(modules.globals.target_path)
create_temp(modules.globals.target_path)
print('Extracting frames...')
extract_frames(modules.globals.target_path)
temp_frame_paths = get_temp_frame_paths(modules.globals.target_path)
i = 0
for temp_frame_path in tqdm(temp_frame_paths, desc="Extracting face embeddings from frames"):
temp_frame = cv2.imread(temp_frame_path)
many_faces = get_many_faces(temp_frame)
for face in many_faces:
face_embeddings.append(face.normed_embedding)
frame_face_embeddings.append({'frame': i, 'faces': many_faces, 'location': temp_frame_path})
i += 1
centroids = find_cluster_centroids(face_embeddings)
for frame in frame_face_embeddings:
for face in frame['faces']:
closest_centroid_index, _ = find_closest_centroid(centroids, face.normed_embedding)
face['target_centroid'] = closest_centroid_index
for i in range(len(centroids)):
modules.globals.souce_target_map.append({
'id' : i
})
temp = []
for frame in tqdm(frame_face_embeddings, desc=f"Mapping frame embeddings to centroids-{i}"):
temp.append({'frame': frame['frame'], 'faces': [face for face in frame['faces'] if face['target_centroid'] == i], 'location': frame['location']})
modules.globals.souce_target_map[i]['target_faces_in_frame'] = temp
# dump_faces(centroids, frame_face_embeddings)
default_target_face()
except ValueError:
return None
def default_target_face():
for map in modules.globals.souce_target_map:
best_face = None
best_frame = None
for frame in map['target_faces_in_frame']:
if len(frame['faces']) > 0:
best_face = frame['faces'][0]
best_frame = frame
break
for frame in map['target_faces_in_frame']:
for face in frame['faces']:
if face['det_score'] > best_face['det_score']:
best_face = face
best_frame = frame
x_min, y_min, x_max, y_max = best_face['bbox']
target_frame = cv2.imread(best_frame['location'])
map['target'] = {
'cv2' : target_frame[int(y_min):int(y_max), int(x_min):int(x_max)],
'face' : best_face
}
def dump_faces(centroids: Any, frame_face_embeddings: list):
temp_directory_path = get_temp_directory_path(modules.globals.target_path)
for i in range(len(centroids)):
if os.path.exists(temp_directory_path + f"/{i}") and os.path.isdir(temp_directory_path + f"/{i}"):
shutil.rmtree(temp_directory_path + f"/{i}")
Path(temp_directory_path + f"/{i}").mkdir(parents=True, exist_ok=True)
for frame in tqdm(frame_face_embeddings, desc=f"Copying faces to temp/./{i}"):
temp_frame = cv2.imread(frame['location'])
j = 0
for face in frame['faces']:
if face['target_centroid'] == i:
x_min, y_min, x_max, y_max = face['bbox']
if temp_frame[int(y_min):int(y_max), int(x_min):int(x_max)].size > 0:
cv2.imwrite(temp_directory_path + f"/{i}/{frame['frame']}_{j}.png", temp_frame[int(y_min):int(y_max), int(x_min):int(x_max)])
j += 1