mirror of
https://github.com/hacksider/Deep-Live-Cam.git
synced 2025-03-17 13:21:46 +01:00
37 lines
1.2 KiB
Python
37 lines
1.2 KiB
Python
import numpy
|
|
import opennsfw2
|
|
from PIL import Image
|
|
import cv2 # Add OpenCV import
|
|
import modules.globals # Import globals to access the color correction toggle
|
|
|
|
from modules.typing import Frame
|
|
|
|
MAX_PROBABILITY = 0.85
|
|
|
|
# Preload the model once for efficiency
|
|
model = None
|
|
|
|
def predict_frame(target_frame: Frame) -> bool:
|
|
# Convert the frame to RGB before processing if color correction is enabled
|
|
if modules.globals.color_correction:
|
|
target_frame = cv2.cvtColor(target_frame, cv2.COLOR_BGR2RGB)
|
|
|
|
image = Image.fromarray(target_frame)
|
|
image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO)
|
|
global model
|
|
if model is None:
|
|
model = opennsfw2.make_open_nsfw_model()
|
|
|
|
views = numpy.expand_dims(image, axis=0)
|
|
_, probability = model.predict(views)[0]
|
|
return probability > MAX_PROBABILITY
|
|
|
|
|
|
def predict_image(target_path: str) -> bool:
|
|
return opennsfw2.predict_image(target_path) > MAX_PROBABILITY
|
|
|
|
|
|
def predict_video(target_path: str) -> bool:
|
|
_, probabilities = opennsfw2.predict_video_frames(video_path=target_path, frame_interval=100)
|
|
return any(probability > MAX_PROBABILITY for probability in probabilities)
|