ESP-Miner/main/tasks/power_management_task.c

328 lines
12 KiB
C

#include "DS4432U.h"
#include "EMC2101.h"
#include "EMC2302.h"
#include "INA260.h"
#include "TPS546.h"
#include "TMP1075.h"
#include "bm1397.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "global_state.h"
#include "math.h"
#include "mining.h"
#include "nvs_config.h"
#include "serial.h"
#include <string.h>
#define POLL_RATE 2000
#define MAX_TEMP 90.0
#define THROTTLE_TEMP 75.0
#define THROTTLE_TEMP_RANGE (MAX_TEMP - THROTTLE_TEMP)
#define TPS546_THROTTLE_TEMP 105.0
#define VOLTAGE_START_THROTTLE 4900
#define VOLTAGE_MIN_THROTTLE 3500
#define VOLTAGE_RANGE (VOLTAGE_START_THROTTLE - VOLTAGE_MIN_THROTTLE)
static const char * TAG = "power_management";
static float _fbound(float value, float lower_bound, float upper_bound)
{
if (value < lower_bound)
return lower_bound;
if (value > upper_bound)
return upper_bound;
return value;
}
// Set the fan speed between 20% min and 100% max based on chip temperature as input.
// The fan speed increases from 20% to 100% proportionally to the temperature increase from 50 and THROTTLE_TEMP
static void automatic_fan_speed(float chip_temp)
{
double result = 0.0;
double min_temp = 50.0;
double min_fan_speed = 20.0;
if (chip_temp < min_temp) {
result = min_fan_speed;
} else if (chip_temp >= THROTTLE_TEMP) {
result = 100;
} else {
double temp_range = THROTTLE_TEMP - min_temp;
double fan_range = 100 - min_fan_speed;
result = ((chip_temp - min_temp) / temp_range) * fan_range + min_fan_speed;
}
EMC2101_set_fan_speed((float) result / 100);
}
// Returns the vcore voltage using the appropriate source
uint16_t Get_vcore(void)
{
// TODO determine which plaform we are on for vcore retrieval
// Regular bitaxe uses ADC for vcore
//return ADC_get_vcore();
// Hex regulator reports measured vcore across all 3 domains
return (TPS546_get_vout() * 1000) / 3;
}
void POWER_MANAGEMENT_task(void * pvParameters)
{
GlobalState * GLOBAL_STATE = (GlobalState *) pvParameters;
PowerManagementModule * power_management = &GLOBAL_STATE->POWER_MANAGEMENT_MODULE;
power_management->frequency_multiplier = 1;
char * board_version = nvs_config_get_string(NVS_CONFIG_BOARD_VERSION, "unknown");
power_management->HAS_POWER_EN =
(strcmp(board_version, "202") == 1 || strcmp(board_version, "203") == 1 || strcmp(board_version, "204") == 1);
power_management->HAS_PLUG_SENSE = strcmp(board_version, "204") == 1;
free(board_version);
int last_frequency_increase = 0;
bool read_power = INA260_installed();
uint16_t frequency_target = nvs_config_get_u16(NVS_CONFIG_ASIC_FREQ, CONFIG_ASIC_FREQUENCY);
uint16_t auto_fan_speed = nvs_config_get_u16(NVS_CONFIG_AUTO_FAN_SPEED, 1);
// Configure GPIO12 as input(barrel jack) 1 is plugged in
gpio_config_t barrel_jack_conf = {
.pin_bit_mask = (1ULL << GPIO_NUM_12),
.mode = GPIO_MODE_INPUT,
};
gpio_config(&barrel_jack_conf);
int barrel_jack_plugged_in = gpio_get_level(GPIO_NUM_12);
gpio_set_direction(GPIO_NUM_10, GPIO_MODE_OUTPUT);
if (barrel_jack_plugged_in == 1 || !power_management->HAS_PLUG_SENSE) {
// turn ASIC on
gpio_set_level(GPIO_NUM_10, 0);
} else {
// turn ASIC off
gpio_set_level(GPIO_NUM_10, 1);
}
vTaskDelay(3000 / portTICK_PERIOD_MS);
while (1) {
if (read_power == true) {
power_management->voltage = INA260_read_voltage();
power_management->power = INA260_read_power() / 1000;
power_management->current = INA260_read_current();
}
power_management->fan_speed = EMC2101_get_fan_speed();
if (strcmp(GLOBAL_STATE->asic_model, "BM1397") == 0) {
power_management->chip_temp = EMC2101_get_external_temp();
// Voltage
// We'll throttle between 4.9v and 3.5v
float voltage_multiplier =
_fbound((power_management->voltage - VOLTAGE_MIN_THROTTLE) * (1 / (float) VOLTAGE_RANGE), 0, 1);
// Temperature
float temperature_multiplier = 1;
float over_temp = -(THROTTLE_TEMP - power_management->chip_temp);
if (over_temp > 0) {
temperature_multiplier = (THROTTLE_TEMP_RANGE - over_temp) / THROTTLE_TEMP_RANGE;
}
float lowest_multiplier = 1;
float multipliers[2] = {voltage_multiplier, temperature_multiplier};
for (int i = 0; i < 2; i++) {
if (multipliers[i] < lowest_multiplier) {
lowest_multiplier = multipliers[i];
}
}
power_management->frequency_multiplier = lowest_multiplier;
float target_frequency = _fbound(power_management->frequency_multiplier * frequency_target, 0, frequency_target);
if (target_frequency < 50) {
// TODO: Turn the chip off
}
// chip is coming back from a low/no voltage event
if (power_management->frequency_value < 50 && target_frequency > 50) {
// TODO recover gracefully?
esp_restart();
}
if (power_management->frequency_value > target_frequency) {
power_management->frequency_value = target_frequency;
last_frequency_increase = 0;
BM1397_send_hash_frequency(power_management->frequency_value);
ESP_LOGI(TAG, "target %f, Freq %f, Temp %f, Power %f", target_frequency, power_management->frequency_value,
power_management->chip_temp, power_management->power);
} else {
if (last_frequency_increase > 120 && power_management->frequency_value != frequency_target) {
float add = (target_frequency + power_management->frequency_value) / 2;
power_management->frequency_value += _fbound(add, 2, 20);
BM1397_send_hash_frequency(power_management->frequency_value);
ESP_LOGI(TAG, "target %f, Freq %f, Temp %f, Power %f", target_frequency, power_management->frequency_value,
power_management->chip_temp, power_management->power);
last_frequency_increase = 60;
} else {
last_frequency_increase++;
}
}
} else if (strcmp(GLOBAL_STATE->asic_model, "BM1366") == 0 || strcmp(GLOBAL_STATE->asic_model, "BM1368") == 0) {
power_management->chip_temp = EMC2101_get_internal_temp() + 5;
if (power_management->chip_temp > THROTTLE_TEMP &&
(power_management->frequency_value > 50 || power_management->voltage > 1000)) {
ESP_LOGE(TAG, "OVERHEAT");
if (power_management->HAS_POWER_EN) {
gpio_set_level(GPIO_NUM_10, 1);
} else {
nvs_config_set_u16(NVS_CONFIG_ASIC_VOLTAGE, 990);
nvs_config_set_u16(NVS_CONFIG_ASIC_FREQ, 50);
nvs_config_set_u16(NVS_CONFIG_FAN_SPEED, 100);
nvs_config_set_u16(NVS_CONFIG_AUTO_FAN_SPEED, 0);
exit(EXIT_FAILURE);
}
}
}
if (auto_fan_speed == 1) {
automatic_fan_speed(power_management->chip_temp);
} else {
EMC2101_set_fan_speed((float) nvs_config_get_u16(NVS_CONFIG_FAN_SPEED, 100) / 100);
}
// ESP_LOGI(TAG, "target %f, Freq %f, Volt %f, Power %f", target_frequency, power_management->frequency_value,
// power_management->voltage, power_management->power);
// Read the state of GPIO12
if (power_management->HAS_PLUG_SENSE) {
int gpio12_state = gpio_get_level(GPIO_NUM_12);
if (gpio12_state == 0) {
// turn ASIC off
gpio_set_level(GPIO_NUM_10, 1);
}
}
vTaskDelay(POLL_RATE / portTICK_PERIOD_MS);
}
}
void POWER_MANAGEMENT_HEX_task(void * pvParameters)
{
GlobalState * GLOBAL_STATE = (GlobalState *) pvParameters;
PowerManagementModule * power_management = &GLOBAL_STATE->POWER_MANAGEMENT_MODULE;
power_management->frequency_multiplier = 1;
int last_frequency_increase = 0;
uint16_t frequency_target = nvs_config_get_u16(NVS_CONFIG_ASIC_FREQ, CONFIG_ASIC_FREQUENCY);
uint16_t auto_fan_speed = nvs_config_get_u16(NVS_CONFIG_AUTO_FAN_SPEED, 1);
// turn on ASIC core voltage (three domains in series)
int want_vcore = nvs_config_get_u16(NVS_CONFIG_ASIC_VOLTAGE, CONFIG_ASIC_VOLTAGE);
want_vcore *= 3; // across 3 domains
ESP_LOGI(TAG, "---TURNING ON VCORE---");
TPS546_set_vout(want_vcore);
vTaskDelay(3000 / portTICK_PERIOD_MS);
while (1) {
// power_management members
//uint16_t fan_speed;
//float chip_temp;
//float voltage;
//float frequency_multiplier;
//float frequency_value;
//float power;
//float current;
// For reference:
// TPS546_get_vin()- board input voltage
// we don't have a way to measure board input current
// TPS546_get_vout()- core voltage *3 (across all domains)
// TPS546_get_iout()- Current output of regulator
// we don't have a way to measure power, we have to calculate it
// but we don't have total board current, so calculate regulator power
// TPS546_get_temperature()- gets internal regulator temperature
// TMP1075_read_temperature(index)- gets the values from the two board sensors
// TPS546_get_frequency()- gets the regulator switching frequency (probably no need to display)
/* check for faults */
TPS546_check_status();
power_management->voltage = TPS546_get_vin() * 1000;
power_management->current = TPS546_get_iout() * 1000;
// calculate regulator power (in milliwatts)
power_management->power = (TPS546_get_vout() * power_management->current) / 1000;
// get the fan RPM
power_management->fan_speed = EMC2302_get_fan_speed(0);
power_management->fan_speed = EMC2302_get_fan_speed(1);
// Two board temperature sensors
ESP_LOGI(TAG, "Board Temp: %d, %d", TMP1075_read_temperature(0), TMP1075_read_temperature(1));
// get regulator internal temperature
power_management->chip_temp = (float)TPS546_get_temperature();
ESP_LOGI(TAG, "TPS546 Temp: %2f", power_management->chip_temp);
EMC2302_set_fan_speed(1, 100);
// This causes the fan to cycle on/off quickly, need some hysteresis
// for active fan control
//if (power_management->chip_temp > 65) {
// EMC2302_set_fan_speed(1, 100);
//} else {
// EMC2302_set_fan_speed(1, 60);
//}
// TODO figure out best way to detect overheating on the Hex
if (power_management->chip_temp > TPS546_THROTTLE_TEMP &&
(power_management->frequency_value > 50 || power_management->voltage > 1000)) {
ESP_LOGE(TAG, "OVERHEAT");
// Turn off core voltage
TPS546_set_vout(0);
nvs_config_set_u16(NVS_CONFIG_ASIC_VOLTAGE, 990);
nvs_config_set_u16(NVS_CONFIG_ASIC_FREQ, 50);
nvs_config_set_u16(NVS_CONFIG_FAN_SPEED, 100);
nvs_config_set_u16(NVS_CONFIG_AUTO_FAN_SPEED, 0);
exit(EXIT_FAILURE);
}
// TODO fix fan driver
//if (auto_fan_speed == 1) {
// automatic_fan_speed(power_management->chip_temp);
//} else {
// EMC2101_set_fan_speed((float) nvs_config_get_u16(NVS_CONFIG_FAN_SPEED, 100) / 100);
//}
ESP_LOGI(TAG, "VIN: %f, VOUT: %f, IOUT: %f", TPS546_get_vin(), TPS546_get_vout(), TPS546_get_iout());
ESP_LOGI(TAG, "Regulator power: %f mW", power_management->power);
ESP_LOGI(TAG, "TPS546 Frequency %d", TPS546_get_frequency());
vTaskDelay(POLL_RATE / portTICK_PERIOD_MS);
}
}