550 lines
17 KiB
C

#include "bm1368.h"
#include "crc.h"
#include "global_state.h"
#include "serial.h"
#include "utils.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BM1368_RST_PIN GPIO_NUM_1
#define TYPE_JOB 0x20
#define TYPE_CMD 0x40
#define GROUP_SINGLE 0x00
#define GROUP_ALL 0x10
#define CMD_JOB 0x01
#define CMD_SETADDRESS 0x00
#define CMD_WRITE 0x01
#define CMD_READ 0x02
#define CMD_INACTIVE 0x03
#define RESPONSE_CMD 0x00
#define RESPONSE_JOB 0x80
#define SLEEP_TIME 20
#define FREQ_MULT 25.0
#define CLOCK_ORDER_CONTROL_0 0x80
#define CLOCK_ORDER_CONTROL_1 0x84
#define ORDERED_CLOCK_ENABLE 0x20
#define CORE_REGISTER_CONTROL 0x3C
#define PLL3_PARAMETER 0x68
#define FAST_UART_CONFIGURATION 0x28
#define TICKET_MASK 0x14
#define MISC_CONTROL 0x18
typedef struct __attribute__((__packed__))
{
uint8_t preamble[2];
uint32_t nonce;
uint8_t midstate_num;
uint8_t job_id;
uint16_t version;
uint8_t crc;
} asic_result;
static const char * TAG = "bm1368Module";
static uint8_t asic_response_buffer[CHUNK_SIZE];
static task_result result;
/// @brief
/// @param ftdi
/// @param header
/// @param data
/// @param len
static void _send_BM1368(uint8_t header, uint8_t * data, uint8_t data_len, bool debug)
{
packet_type_t packet_type = (header & TYPE_JOB) ? JOB_PACKET : CMD_PACKET;
uint8_t total_length = (packet_type == JOB_PACKET) ? (data_len + 6) : (data_len + 5);
// allocate memory for buffer
unsigned char * buf = malloc(total_length);
// add the preamble
buf[0] = 0x55;
buf[1] = 0xAA;
// add the header field
buf[2] = header;
// add the length field
buf[3] = (packet_type == JOB_PACKET) ? (data_len + 4) : (data_len + 3);
// add the data
memcpy(buf + 4, data, data_len);
// add the correct crc type
if (packet_type == JOB_PACKET) {
uint16_t crc16_total = crc16_false(buf + 2, data_len + 2);
buf[4 + data_len] = (crc16_total >> 8) & 0xFF;
buf[5 + data_len] = crc16_total & 0xFF;
} else {
buf[4 + data_len] = crc5(buf + 2, data_len + 2);
}
// send serial data
SERIAL_send(buf, total_length, debug);
free(buf);
}
static void _send_simple(uint8_t * data, uint8_t total_length)
{
unsigned char * buf = malloc(total_length);
memcpy(buf, data, total_length);
SERIAL_send(buf, total_length, false);
free(buf);
}
static void _send_chain_inactive(void)
{
unsigned char read_address[2] = {0x00, 0x00};
// send serial data
_send_BM1368((TYPE_CMD | GROUP_ALL | CMD_INACTIVE), read_address, 2, false);
}
static void _set_chip_address(uint8_t chipAddr)
{
unsigned char read_address[2] = {chipAddr, 0x00};
// send serial data
_send_BM1368((TYPE_CMD | GROUP_SINGLE | CMD_SETADDRESS), read_address, 2, false);
}
void BM1368_send_hash_frequency(float target_freq)
{
// default 200Mhz if it fails
unsigned char freqbuf[9] = {0x00, 0x08, 0x40, 0xA0, 0x02, 0x41}; // freqbuf - pll0_parameter
float newf = 200.0;
uint8_t fb_divider = 0;
uint8_t post_divider1 = 0, post_divider2 = 0;
uint8_t ref_divider = 0;
float min_difference = 10;
// refdiver is 2 or 1
// postdivider 2 is 1 to 7
// postdivider 1 is 1 to 7 and less than postdivider 2
// fbdiv is 144 to 235
for (uint8_t refdiv_loop = 2; refdiv_loop > 0 && fb_divider == 0; refdiv_loop--) {
for (uint8_t postdiv1_loop = 7; postdiv1_loop > 0 && fb_divider == 0; postdiv1_loop--) {
for (uint8_t postdiv2_loop = 1; postdiv2_loop < postdiv1_loop && fb_divider == 0; postdiv2_loop++) {
int temp_fb_divider = round(((float) (postdiv1_loop * postdiv2_loop * target_freq * refdiv_loop) / 25.0));
if (temp_fb_divider >= 144 && temp_fb_divider <= 235) {
float temp_freq = 25.0 * (float) temp_fb_divider / (float) (refdiv_loop * postdiv2_loop * postdiv1_loop);
float freq_diff = fabs(target_freq - temp_freq);
if (freq_diff < min_difference) {
fb_divider = temp_fb_divider;
post_divider1 = postdiv1_loop;
post_divider2 = postdiv2_loop;
ref_divider = refdiv_loop;
min_difference = freq_diff;
break;
}
}
}
}
}
if (fb_divider == 0) {
puts("Finding dividers failed, using default value (200Mhz)");
} else {
newf = 25.0 / (float) (ref_divider * fb_divider) / (float) (post_divider1 * post_divider2);
printf("final refdiv: %d, fbdiv: %d, postdiv1: %d, postdiv2: %d, min diff value: %f\n", ref_divider, fb_divider,
post_divider1, post_divider2, min_difference);
freqbuf[3] = fb_divider;
freqbuf[4] = ref_divider;
freqbuf[5] = (((post_divider1 - 1) & 0xf) << 4) + ((post_divider2 - 1) & 0xf);
if (fb_divider * 25 / (float) ref_divider >= 2400) {
freqbuf[2] = 0x50;
}
}
_send_BM1368((TYPE_CMD | GROUP_ALL | CMD_WRITE), freqbuf, 6, false);
ESP_LOGI(TAG, "Setting Frequency to %.2fMHz (%.2f)", target_freq, newf);
}
static void do_frequency_ramp_up() {
//PLLO settings taken from a S21 dump.
//todo: do this right.
uint8_t freq_list[65][4] = {{0x40, 0xA2, 0x02, 0x55},
{0x40, 0xAF, 0x02, 0x64},
{0x40, 0xA5, 0x02, 0x54},
{0x40, 0xA8, 0x02, 0x63},
{0x40, 0xB6, 0x02, 0x63},
{0x40, 0xA8, 0x02, 0x53},
{0x40, 0xB4, 0x02, 0x53},
{0x40, 0xA8, 0x02, 0x62},
{0x40, 0xAA, 0x02, 0x43},
{0x40, 0xA2, 0x02, 0x52},
{0x40, 0xAB, 0x02, 0x52},
{0x40, 0xB4, 0x02, 0x52},
{0x40, 0xBD, 0x02, 0x52},
{0x40, 0xA5, 0x02, 0x42},
{0x40, 0xA1, 0x02, 0x61},
{0x40, 0xA8, 0x02, 0x61},
{0x40, 0xAF, 0x02, 0x61},
{0x40, 0xB6, 0x02, 0x61},
{0x40, 0xA2, 0x02, 0x51},
{0x40, 0xA8, 0x02, 0x51},
{0x40, 0xAE, 0x02, 0x51},
{0x40, 0xB4, 0x02, 0x51},
{0x40, 0xBA, 0x02, 0x51},
{0x40, 0xA0, 0x02, 0x41},
{0x40, 0xA5, 0x02, 0x41},
{0x40, 0xAA, 0x02, 0x41},
{0x40, 0xAF, 0x02, 0x41},
{0x40, 0xB4, 0x02, 0x41},
{0x40, 0xB9, 0x02, 0x41},
{0x40, 0xBE, 0x02, 0x41},
{0x40, 0xA0, 0x02, 0x31},
{0x40, 0xA4, 0x02, 0x31},
{0x40, 0xA8, 0x02, 0x31},
{0x40, 0xAC, 0x02, 0x31},
{0x40, 0xB0, 0x02, 0x31},
{0x40, 0xB4, 0x02, 0x31},
{0x40, 0xA1, 0x02, 0x60},
{0x40, 0xBC, 0x02, 0x31},
{0x40, 0xA8, 0x02, 0x60},
{0x40, 0xAF, 0x02, 0x60},
{0x50, 0xCC, 0x02, 0x31},
{0x40, 0xB6, 0x02, 0x60},
{0x50, 0xD4, 0x02, 0x31},
{0x40, 0xA2, 0x02, 0x50},
{0x40, 0xA5, 0x02, 0x50},
{0x40, 0xA8, 0x02, 0x50},
{0x40, 0xAB, 0x02, 0x50},
{0x40, 0xAE, 0x02, 0x50},
{0x40, 0xB1, 0x02, 0x50},
{0x40, 0xB4, 0x02, 0x50},
{0x40, 0xB7, 0x02, 0x50},
{0x40, 0xBA, 0x02, 0x50},
{0x40, 0xBD, 0x02, 0x50},
{0x40, 0xA0, 0x02, 0x40},
{0x50, 0xC3, 0x02, 0x50},
{0x40, 0xA5, 0x02, 0x40},
{0x50, 0xC9, 0x02, 0x50},
{0x40, 0xAA, 0x02, 0x40},
{0x50, 0xCF, 0x02, 0x50},
{0x40, 0xAF, 0x02, 0x40},
{0x50, 0xD5, 0x02, 0x50},
{0x40, 0xB4, 0x02, 0x40},
{0x50, 0xDB, 0x02, 0x50},
{0x40, 0xB9, 0x02, 0x40},
{0x50, 0xE0, 0x02, 0x50}};
uint8_t freq_cmd[6] = {0x00, 0x08, 0x40, 0xB4, 0x02, 0x40};
for (int i = 0; i < 65; i++) {
freq_cmd[2] = freq_list[i][0];
freq_cmd[3] = freq_list[i][1];
freq_cmd[4] = freq_list[i][2];
freq_cmd[5] = freq_list[i][3];
_send_BM1368((TYPE_CMD | GROUP_ALL | CMD_WRITE), freq_cmd, 6, false);
vTaskDelay(100 / portTICK_PERIOD_MS);
}
}
static uint8_t _send_init(uint64_t frequency)
{
//enable and set version rolling mask to 0xFFFF
unsigned char init0[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0xA4, 0x90, 0x00, 0xFF, 0xFF, 0x1C};
_send_simple(init0, 11);
//enable and set version rolling mask to 0xFFFF (again)
unsigned char init1[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0xA4, 0x90, 0x00, 0xFF, 0xFF, 0x1C};
_send_simple(init1, 11);
//enable and set version rolling mask to 0xFFFF (again)
unsigned char init2[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0xA4, 0x90, 0x00, 0xFF, 0xFF, 0x1C};
_send_simple(init2, 11);
//read register 00 on all chips (should respond AA 55 13 68 00 00 00 00 00 00 0F)
unsigned char init3[7] = {0x55, 0xAA, 0x52, 0x05, 0x00, 0x00, 0x0A};
_send_simple(init3, 7);
int chip_counter = 0;
while (true) {
if (SERIAL_rx(asic_response_buffer, 11, 1000) > 0) {
chip_counter++;
} else {
break;
}
}
ESP_LOGI(TAG, "%i chip(s) detected on the chain", chip_counter);
//enable and set version rolling mask to 0xFFFF (again)
unsigned char init4[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0xA4, 0x90, 0x00, 0xFF, 0xFF, 0x1C};
_send_simple(init4, 11);
//Reg_A8
unsigned char init5[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0xA8, 0x00, 0x07, 0x00, 0x00, 0x03};
_send_simple(init5, 11);
//Misc Control
unsigned char init6[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0x18, 0xFF, 0x0F, 0xC1, 0x00, 0x00};
_send_simple(init6, 11);
//chain inactive
unsigned char init7[7] = {0x55, 0xAA, 0x53, 0x05, 0x00, 0x00, 0x03};
_send_simple(init7, 7);
//assign address 0x00 to the first chip
unsigned char init8[7] = {0x55, 0xAA, 0x40, 0x05, 0x00, 0x00, 0x1C};
_send_simple(init8, 7);
//Core Register Control
unsigned char init9[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0x3C, 0x80, 0x00, 0x8B, 0x00, 0x12};
_send_simple(init9, 11);
//Core Register Control
unsigned char init10[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0x3C, 0x80, 0x00, 0x80, 0x18, 0x1F};
_send_simple(init10, 11);
//set ticket mask
// unsigned char init11[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0x14, 0x00, 0x00, 0x00, 0xFF, 0x08};
// _send_simple(init11, 11);
BM1368_set_job_difficulty_mask(BM1368_INITIAL_DIFFICULTY);
//Analog Mux Control
unsigned char init12[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0x54, 0x00, 0x00, 0x00, 0x03, 0x1D};
_send_simple(init12, 11);
//Set the IO Driver Strength on chip 00
unsigned char init13[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0x58, 0x02, 0x11, 0x11, 0x11, 0x06};
_send_simple(init13, 11);
//Reg_A8
unsigned char init14[11] = {0x55, 0xAA, 0x41, 0x09, 0x00, 0xA8, 0x00, 0x07, 0x01, 0xF0, 0x15};
_send_simple(init14, 11);
//Misc Control
unsigned char init15[11] = {0x55, 0xAA, 0x41, 0x09, 0x00, 0x18, 0xF0, 0x00, 0xC1, 0x00, 0x0C};
_send_simple(init15, 11);
//Core Register Control
unsigned char init16[11] = {0x55, 0xAA, 0x41, 0x09, 0x00, 0x3C, 0x80, 0x00, 0x8B, 0x00, 0x1A};
_send_simple(init16, 11);
//Core Register Control
unsigned char init17[11] = {0x55, 0xAA, 0x41, 0x09, 0x00, 0x3C, 0x80, 0x00, 0x80, 0x18, 0x17};
_send_simple(init17, 11);
//Core Register Control
unsigned char init18[11] = {0x55, 0xAA, 0x41, 0x09, 0x00, 0x3C, 0x80, 0x00, 0x82, 0xAA, 0x05};
_send_simple(init18, 11);
do_frequency_ramp_up();
BM1368_send_hash_frequency(frequency);
return chip_counter;
}
// reset the BM1368 via the RTS line
static void _reset(void)
{
gpio_set_level(BM1368_RST_PIN, 0);
// delay for 100ms
vTaskDelay(100 / portTICK_PERIOD_MS);
// set the gpio pin high
gpio_set_level(BM1368_RST_PIN, 1);
// delay for 100ms
vTaskDelay(100 / portTICK_PERIOD_MS);
}
static void _send_read_address(void)
{
unsigned char read_address[2] = {0x00, 0x00};
// send serial data
_send_BM1368((TYPE_CMD | GROUP_ALL | CMD_READ), read_address, 2, false);
}
uint8_t BM1368_init(uint64_t frequency)
{
ESP_LOGI(TAG, "Initializing BM1368");
memset(asic_response_buffer, 0, 1024);
esp_rom_gpio_pad_select_gpio(BM1368_RST_PIN);
gpio_set_direction(BM1368_RST_PIN, GPIO_MODE_OUTPUT);
// reset the bm1368
_reset();
// send the init command
//_send_read_address();
return _send_init(frequency);
}
// Baud formula = 25M/((denominator+1)*8)
// The denominator is 5 bits found in the misc_control (bits 9-13)
int BM1368_set_default_baud(void)
{
// default divider of 26 (11010) for 115,749
unsigned char baudrate[9] = {0x00, MISC_CONTROL, 0x00, 0x00, 0b01111010, 0b00110001}; // baudrate - misc_control
_send_BM1368((TYPE_CMD | GROUP_ALL | CMD_WRITE), baudrate, 6, false);
return 115749;
}
int BM1368_set_max_baud(void)
{
/// return 115749;
// divider of 0 for 3,125,000
ESP_LOGI(TAG, "Setting max baud of 1000000 ");
unsigned char init8[11] = {0x55, 0xAA, 0x51, 0x09, 0x00, 0x28, 0x11, 0x30, 0x02, 0x00, 0x03};
_send_simple(init8, 11);
return 1000000;
}
void BM1368_set_job_difficulty_mask(int difficulty)
{
// Default mask of 256 diff
unsigned char job_difficulty_mask[9] = {0x00, TICKET_MASK, 0b00000000, 0b00000000, 0b00000000, 0b11111111};
// The mask must be a power of 2 so there are no holes
// Correct: {0b00000000, 0b00000000, 0b11111111, 0b11111111}
// Incorrect: {0b00000000, 0b00000000, 0b11100111, 0b11111111}
// (difficulty - 1) if it is a pow 2 then step down to second largest for more hashrate sampling
difficulty = _largest_power_of_two(difficulty) - 1;
// convert difficulty into char array
// Ex: 256 = {0b00000000, 0b00000000, 0b00000000, 0b11111111}, {0x00, 0x00, 0x00, 0xff}
// Ex: 512 = {0b00000000, 0b00000000, 0b00000001, 0b11111111}, {0x00, 0x00, 0x01, 0xff}
for (int i = 0; i < 4; i++) {
char value = (difficulty >> (8 * i)) & 0xFF;
// The char is read in backwards to the register so we need to reverse them
// So a mask of 512 looks like 0b00000000 00000000 00000001 1111111
// and not 0b00000000 00000000 10000000 1111111
job_difficulty_mask[5 - i] = _reverse_bits(value);
}
ESP_LOGI(TAG, "Setting ASIC difficulty mask to %d", difficulty);
_send_BM1368((TYPE_CMD | GROUP_ALL | CMD_WRITE), job_difficulty_mask, 6, false);
}
static uint8_t id = 0;
void BM1368_send_work(void * pvParameters, bm_job * next_bm_job)
{
GlobalState * GLOBAL_STATE = (GlobalState *) pvParameters;
BM1368_job job;
id = (id + 24) % 128;
job.job_id = id;
job.num_midstates = 0x01;
memcpy(&job.starting_nonce, &next_bm_job->starting_nonce, 4);
memcpy(&job.nbits, &next_bm_job->target, 4);
memcpy(&job.ntime, &next_bm_job->ntime, 4);
memcpy(job.merkle_root, next_bm_job->merkle_root_be, 32);
memcpy(job.prev_block_hash, next_bm_job->prev_block_hash_be, 32);
memcpy(&job.version, &next_bm_job->version, 4);
if (GLOBAL_STATE->ASIC_TASK_MODULE.active_jobs[job.job_id] != NULL) {
free_bm_job(GLOBAL_STATE->ASIC_TASK_MODULE.active_jobs[job.job_id]);
}
GLOBAL_STATE->ASIC_TASK_MODULE.active_jobs[job.job_id] = next_bm_job;
pthread_mutex_lock(&GLOBAL_STATE->valid_jobs_lock);
GLOBAL_STATE->valid_jobs[job.job_id] = 1;
// ESP_LOGI(TAG, "Added Job: %i", job.job_id);
pthread_mutex_unlock(&GLOBAL_STATE->valid_jobs_lock);
_send_BM1368((TYPE_JOB | GROUP_SINGLE | CMD_WRITE), &job, sizeof(BM1368_job), false);
}
asic_result * BM1368_receive_work(void)
{
// wait for a response, wait time is pretty arbitrary
int received = SERIAL_rx(asic_response_buffer, 11, 60000);
if (received < 0) {
ESP_LOGI(TAG, "Error in serial RX");
return NULL;
} else if (received == 0) {
// Didn't find a solution, restart and try again
return NULL;
}
if (received != 11 || asic_response_buffer[0] != 0xAA || asic_response_buffer[1] != 0x55) {
ESP_LOGI(TAG, "Serial RX invalid %i", received);
ESP_LOG_BUFFER_HEX(TAG, asic_response_buffer, received);
return NULL;
}
return (asic_result *) asic_response_buffer;
}
static uint16_t reverse_uint16(uint16_t num)
{
return (num >> 8) | (num << 8);
}
task_result * BM1368_proccess_work(void * pvParameters)
{
asic_result * asic_result = BM1368_receive_work();
if (asic_result == NULL) {
return NULL;
}
uint8_t job_id = asic_result->job_id;
ESP_LOGI(TAG, "Job ID: %02X", job_id);
uint8_t rx_job_id = ((int8_t)job_id & 0xf0) >> 1;
ESP_LOGI(TAG, "RX Job ID: %02X", rx_job_id);
GlobalState * GLOBAL_STATE = (GlobalState *) pvParameters;
if (GLOBAL_STATE->valid_jobs[rx_job_id] == 0) {
ESP_LOGE(TAG, "Invalid job nonce found, 0x%02X", rx_job_id);
return NULL;
}
uint32_t rolled_version = GLOBAL_STATE->ASIC_TASK_MODULE.active_jobs[rx_job_id]->version;
// // // shift the 16 bit value left 13
rolled_version = (reverse_uint16(asic_result->version) << 13) | rolled_version;
result.job_id = rx_job_id;
result.nonce = asic_result->nonce;
result.rolled_version = rolled_version;
return &result;
}