Files

634 lines
22 KiB
C

#include "princeton.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#include "../blocks/custom_btn_i.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
#define TAG "SubGhzProtocolPrinceton"
#define PRINCETON_GUARD_TIME_DEFALUT 30 //GUARD_TIME = PRINCETON_GUARD_TIME_DEFALUT * TE
// Guard Time value should be between 15 -> 72 otherwise default value will be used
static const SubGhzBlockConst subghz_protocol_princeton_const = {
.te_short = 390,
.te_long = 1170,
.te_delta = 300,
.min_count_bit_for_found = 24,
};
struct SubGhzProtocolDecoderPrinceton {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
uint32_t te;
uint32_t last_data;
uint32_t guard_time;
};
struct SubGhzProtocolEncoderPrinceton {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
uint32_t te;
uint32_t guard_time;
};
typedef enum {
PrincetonDecoderStepReset = 0,
PrincetonDecoderStepSaveDuration,
PrincetonDecoderStepCheckDuration,
} PrincetonDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_princeton_decoder = {
.alloc = subghz_protocol_decoder_princeton_alloc,
.free = subghz_protocol_decoder_princeton_free,
.feed = subghz_protocol_decoder_princeton_feed,
.reset = subghz_protocol_decoder_princeton_reset,
.get_hash_data = NULL,
.get_hash_data_long = subghz_protocol_decoder_princeton_get_hash_data,
.serialize = subghz_protocol_decoder_princeton_serialize,
.deserialize = subghz_protocol_decoder_princeton_deserialize,
.get_string = subghz_protocol_decoder_princeton_get_string,
.get_string_brief = NULL,
};
const SubGhzProtocolEncoder subghz_protocol_princeton_encoder = {
.alloc = subghz_protocol_encoder_princeton_alloc,
.free = subghz_protocol_encoder_princeton_free,
.deserialize = subghz_protocol_encoder_princeton_deserialize,
.stop = subghz_protocol_encoder_princeton_stop,
.yield = subghz_protocol_encoder_princeton_yield,
};
const SubGhzProtocol subghz_protocol_princeton = {
.name = SUBGHZ_PROTOCOL_PRINCETON_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_315 |
SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load |
SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_princeton_decoder,
.encoder = &subghz_protocol_princeton_encoder,
.filter = SubGhzProtocolFilter_Princeton,
};
void* subghz_protocol_encoder_princeton_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderPrinceton* instance = malloc(sizeof(SubGhzProtocolEncoderPrinceton));
instance->base.protocol = &subghz_protocol_princeton;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 52; //max 24bit*2 + 2 (start, stop)
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_princeton_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderPrinceton* instance = context;
free(instance->encoder.upload);
free(instance);
}
// Get custom button code
static uint8_t subghz_protocol_princeton_get_btn_code(void) {
uint8_t custom_btn_id = subghz_custom_btn_get();
uint8_t original_btn_code = subghz_custom_btn_get_original();
uint8_t btn = original_btn_code;
// Set custom button
if((custom_btn_id == SUBGHZ_CUSTOM_BTN_OK) && (original_btn_code != 0)) {
// Restore original button code
btn = original_btn_code;
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_UP) {
switch(original_btn_code) {
case 0x1:
btn = 0x2;
break;
case 0x2:
btn = 0x1;
break;
case 0x4:
btn = 0x2;
break;
case 0x8:
btn = 0x2;
break;
case 0xF:
btn = 0x2;
break;
// Second encoding type
case 0x30:
btn = 0xC0;
break;
case 0xC0:
btn = 0x30;
break;
case 0xF3:
btn = 0xC0;
break;
case 0xFC:
btn = 0xC0;
break;
default:
break;
}
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_DOWN) {
switch(original_btn_code) {
case 0x1:
btn = 0x4;
break;
case 0x2:
btn = 0x4;
break;
case 0x4:
btn = 0x1;
break;
case 0x8:
btn = 0x1;
break;
case 0xF:
btn = 0x1;
break;
// Second encoding type
case 0x30:
btn = 0xF3;
break;
case 0xC0:
btn = 0xF3;
break;
case 0xF3:
btn = 0x30;
break;
case 0xFC:
btn = 0xF3;
break;
default:
break;
}
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_LEFT) {
switch(original_btn_code) {
case 0x1:
btn = 0x8;
break;
case 0x2:
btn = 0x8;
break;
case 0x4:
btn = 0x8;
break;
case 0x8:
btn = 0x4;
break;
case 0xF:
btn = 0x4;
break;
// Second encoding type
case 0x30:
btn = 0xFC;
break;
case 0xC0:
btn = 0xFC;
break;
case 0xF3:
btn = 0xFC;
break;
case 0xFC:
btn = 0x30;
break;
default:
break;
}
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_RIGHT) {
switch(original_btn_code) {
case 0x1:
btn = 0xF;
break;
case 0x2:
btn = 0xF;
break;
case 0x4:
btn = 0xF;
break;
case 0x8:
btn = 0xF;
break;
case 0xF:
btn = 0x8;
break;
default:
break;
}
}
return btn;
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderPrinceton instance
* @return true On success
*/
static bool
subghz_protocol_encoder_princeton_get_upload(SubGhzProtocolEncoderPrinceton* instance) {
furi_assert(instance);
// Generate new key using custom or default button
instance->generic.btn = subghz_protocol_princeton_get_btn_code();
// Reconstruction of the data
// If we have 8bit button code move serial to left by 8 bits (and 4 if 4 bits)
if(instance->generic.btn == 0x30 || instance->generic.btn == 0xC0) {
instance->generic.data =
((uint64_t)instance->generic.serial << 8 | (uint64_t)instance->generic.btn);
} else if(instance->generic.btn == 0xF3 || instance->generic.btn == 0xFC) {
instance->generic.data =
((uint64_t)instance->generic.serial << 8 | (uint64_t)(instance->generic.btn & 0xF));
} else {
instance->generic.data =
((uint64_t)instance->generic.serial << 4 | (uint64_t)instance->generic.btn);
}
size_t index = 0;
size_t size_upload = (instance->generic.data_count_bit * 2) + 2;
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)instance->te * 3);
instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te);
} else {
//send bit 0
instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)instance->te * 3);
}
}
//Send Stop bit
instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te);
//Send PT_GUARD_TIME
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)instance->te * instance->guard_time);
return true;
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
*/
static void subghz_protocol_princeton_check_remote_controller(SubGhzBlockGeneric* instance) {
// Parse button modes for second encoding type (and serial is smaller)
// Button code is 8bit and has fixed values of one of these
// Exclude button code for each type from serial number before parsing
if((instance->data & 0xFF) == 0x30 || (instance->data & 0xFF) == 0xC0) {
// Save serial and button code
instance->serial = instance->data >> 8;
instance->btn = instance->data & 0xFF;
} else if((instance->data & 0xFF) == 0x03 || (instance->data & 0xFF) == 0x0C) {
// Fix for button code 0x03 and 0x0C having zero at the beggining
instance->serial = instance->data >> 8;
instance->btn = (instance->data & 0xFF) | 0xF0;
} else {
instance->serial = instance->data >> 4;
instance->btn = instance->data & 0xF;
}
// Save original button for later use
if(subghz_custom_btn_get_original() == 0) {
subghz_custom_btn_set_original(instance->btn);
}
subghz_custom_btn_set_max(4);
}
SubGhzProtocolStatus
subghz_protocol_encoder_princeton_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderPrinceton* instance = context;
SubGhzProtocolStatus ret = SubGhzProtocolStatusError;
do {
ret = subghz_block_generic_deserialize_check_count_bit(
&instance->generic,
flipper_format,
subghz_protocol_princeton_const.min_count_bit_for_found);
if(ret != SubGhzProtocolStatusOk) {
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
ret = SubGhzProtocolStatusErrorParserOthers;
break;
}
if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) {
FURI_LOG_E(TAG, "Missing TE");
ret = SubGhzProtocolStatusErrorParserTe;
break;
}
//optional parameter parameter
if(!flipper_format_read_uint32(
flipper_format, "Guard_time", (uint32_t*)&instance->guard_time, 1)) {
instance->guard_time = PRINCETON_GUARD_TIME_DEFALUT;
} else {
// Guard Time value should be between 15 -> 72 otherwise default value will be used
if((instance->guard_time < 15) || (instance->guard_time > 72)) {
instance->guard_time = PRINCETON_GUARD_TIME_DEFALUT;
}
}
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
// Get button and serial before calling get_upload
subghz_protocol_princeton_check_remote_controller(&instance->generic);
if(!subghz_protocol_encoder_princeton_get_upload(instance)) {
ret = SubGhzProtocolStatusErrorEncoderGetUpload;
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF;
}
if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Key");
break;
}
instance->encoder.is_running = true;
} while(false);
return ret;
}
void subghz_protocol_encoder_princeton_stop(void* context) {
SubGhzProtocolEncoderPrinceton* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_princeton_yield(void* context) {
SubGhzProtocolEncoderPrinceton* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_princeton_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderPrinceton* instance = malloc(sizeof(SubGhzProtocolDecoderPrinceton));
instance->base.protocol = &subghz_protocol_princeton;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_princeton_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
free(instance);
}
void subghz_protocol_decoder_princeton_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
instance->decoder.parser_step = PrincetonDecoderStepReset;
instance->last_data = 0;
}
void subghz_protocol_decoder_princeton_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
switch(instance->decoder.parser_step) {
case PrincetonDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_princeton_const.te_short * 36) <
subghz_protocol_princeton_const.te_delta * 36)) {
//Found Preambula
instance->decoder.parser_step = PrincetonDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->te = 0;
instance->guard_time = PRINCETON_GUARD_TIME_DEFALUT;
}
break;
case PrincetonDecoderStepSaveDuration:
//save duration
if(level) {
instance->decoder.te_last = duration;
instance->te += duration;
instance->decoder.parser_step = PrincetonDecoderStepCheckDuration;
}
break;
case PrincetonDecoderStepCheckDuration:
if(!level) {
if(duration >= ((uint32_t)subghz_protocol_princeton_const.te_long * 2)) {
instance->decoder.parser_step = PrincetonDecoderStepSaveDuration;
if(instance->decoder.decode_count_bit ==
subghz_protocol_princeton_const.min_count_bit_for_found) {
if((instance->last_data == instance->decoder.decode_data) &&
instance->last_data) {
instance->te /= (instance->decoder.decode_count_bit * 4 + 1);
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
instance->guard_time = roundf((float)duration / instance->te);
// Guard Time value should be between 15 -> 72 otherwise default value will be used
if((instance->guard_time < 15) || (instance->guard_time > 72)) {
instance->guard_time = PRINCETON_GUARD_TIME_DEFALUT;
}
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->last_data = instance->decoder.decode_data;
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->te = 0;
break;
}
instance->te += duration;
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_princeton_const.te_short) <
subghz_protocol_princeton_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_princeton_const.te_long) <
subghz_protocol_princeton_const.te_delta * 3)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = PrincetonDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_princeton_const.te_long) <
subghz_protocol_princeton_const.te_delta * 3) &&
(DURATION_DIFF(duration, subghz_protocol_princeton_const.te_short) <
subghz_protocol_princeton_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = PrincetonDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = PrincetonDecoderStepReset;
}
} else {
instance->decoder.parser_step = PrincetonDecoderStepReset;
}
break;
}
}
uint32_t subghz_protocol_decoder_princeton_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
return subghz_protocol_blocks_get_hash_data_long(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
SubGhzProtocolStatus subghz_protocol_decoder_princeton_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
SubGhzProtocolStatus ret =
subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
if((ret == SubGhzProtocolStatusOk) &&
!flipper_format_write_uint32(flipper_format, "TE", &instance->te, 1)) {
FURI_LOG_E(TAG, "Unable to add TE");
ret = SubGhzProtocolStatusErrorParserTe;
}
if((ret == SubGhzProtocolStatusOk) &&
!flipper_format_write_uint32(flipper_format, "Guard_time", &instance->guard_time, 1)) {
FURI_LOG_E(TAG, "Unable to add Guard_time");
ret = SubGhzProtocolStatusErrorParserOthers;
}
return ret;
}
SubGhzProtocolStatus
subghz_protocol_decoder_princeton_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
SubGhzProtocolStatus ret = SubGhzProtocolStatusError;
do {
ret = subghz_block_generic_deserialize_check_count_bit(
&instance->generic,
flipper_format,
subghz_protocol_princeton_const.min_count_bit_for_found);
if(ret != SubGhzProtocolStatusOk) {
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
ret = SubGhzProtocolStatusErrorParserOthers;
break;
}
if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) {
FURI_LOG_E(TAG, "Missing TE");
ret = SubGhzProtocolStatusErrorParserTe;
break;
}
if(!flipper_format_read_uint32(
flipper_format, "Guard_time", (uint32_t*)&instance->guard_time, 1)) {
instance->guard_time = PRINCETON_GUARD_TIME_DEFALUT;
} else {
// Guard Time value should be between 15 -> 72 otherwise default value will be used
if((instance->guard_time < 15) || (instance->guard_time > 72)) {
instance->guard_time = PRINCETON_GUARD_TIME_DEFALUT;
}
}
} while(false);
return ret;
}
void subghz_protocol_decoder_princeton_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
subghz_protocol_princeton_check_remote_controller(&instance->generic);
uint32_t data_rev = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
if(instance->generic.btn == 0x30 || instance->generic.btn == 0xC0 ||
instance->generic.btn == 0xF3 || instance->generic.btn == 0xFC) {
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n"
"Sn:0x%05lX Btn:%02X (8b)\r\n"
"Te:%luus GT:Te*%lu\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data & 0xFFFFFF),
data_rev,
instance->generic.serial,
(instance->generic.btn == 0xF3 || instance->generic.btn == 0xFC) ?
instance->generic.btn & 0xF :
instance->generic.btn,
instance->te,
instance->guard_time);
} else {
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n"
"Sn:0x%05lX Btn:%01X (4b)\r\n"
"Te:%luus GT:Te*%lu\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data & 0xFFFFFF),
data_rev,
instance->generic.serial,
instance->generic.btn,
instance->te,
instance->guard_time);
}
}