mirror of
https://github.com/Isaacdelly/Plutus.git
synced 2025-03-18 05:41:48 +01:00
Update plutus.py
This commit is contained in:
parent
3d9598184d
commit
caea5a3e8e
45
plutus.py
45
plutus.py
@ -7,10 +7,10 @@ import pickle
|
||||
import hashlib
|
||||
import binascii
|
||||
import multiprocessing
|
||||
from ellipticcurve.privateKey import PrivateKey
|
||||
from ellipticcurve.publicKey import PublicKey
|
||||
import fastecdsa
|
||||
import bloom_filter
|
||||
|
||||
DATABASE = r'database/JAN_09_2019/'
|
||||
DATABASE = r'database/FEB_03_2019/'
|
||||
|
||||
def generate_private_key():
|
||||
"""Generate a random 32-byte hex integer which serves as a randomly generated Bitcoin private key.
|
||||
@ -19,12 +19,11 @@ def generate_private_key():
|
||||
return binascii.hexlify(os.urandom(32)).decode('utf-8').upper()
|
||||
|
||||
def private_key_to_public_key(private_key):
|
||||
"""Accept a hex private key and convert it to its respective public key. Because converting a private key to
|
||||
a public key requires SECP256k1 ECDSA signing, this function is the most time consuming and is a bottleneck
|
||||
in the overall speed of the program.
|
||||
Average Time: 0.0031567731 seconds
|
||||
"""Accept a hex private key and convert it to its respective public key using SECP256k1 ECDSA signing.
|
||||
Average Time: seconds
|
||||
"""
|
||||
return '04' + PrivateKey().fromString(bytes.fromhex(private_key)).publicKey().toString().hex().upper()
|
||||
public_key = fastecdsa.keys.get_public_key(private_key, fastecdsa.curve.secp256k1)
|
||||
return '04' + public_key.x.to_bytes(32, byteorder='big').hex().upper() + public_key.y.to_bytes(32, byteorder='big').hex().upper()
|
||||
|
||||
def public_key_to_address(public_key):
|
||||
"""Accept a public key and convert it to its resepective P2PKH wallet address.
|
||||
@ -48,10 +47,7 @@ def process(private_key, public_key, address, database):
|
||||
assumed to be empty and printed to the user. This is a fast and efficient query.
|
||||
Average Time: 0.0000026941 seconds
|
||||
"""
|
||||
if address in database[0] or \
|
||||
address in database[1] or \
|
||||
address in database[2] or \
|
||||
address in database[3]:
|
||||
if address in database:
|
||||
with open('plutus.txt', 'a') as file:
|
||||
file.write('hex private key: ' + str(private_key) + '\n' +
|
||||
'WIF private key: ' + str(private_key_to_WIF(private_key)) + '\n' +
|
||||
@ -86,30 +82,19 @@ def main(database):
|
||||
"""
|
||||
while True:
|
||||
private_key = generate_private_key() # 0.0000061659 seconds
|
||||
public_key = private_key_to_public_key(private_key) # 0.0031567731 seconds
|
||||
public_key = private_key_to_public_key(private_key) # seconds
|
||||
address = public_key_to_address(public_key) # 0.0000801390 seconds
|
||||
process(private_key, public_key, address, database) # 0.0000026941 seconds
|
||||
# --------------------
|
||||
# 0.0032457721 seconds
|
||||
# brute forces per second = 0.0032457721 ÷ cpu_count()
|
||||
# seconds
|
||||
# brute forces per second = ÷ cpu_count()
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""Deserialize the database and read into a list of sets for easier selection and O(1) complexity. Initialize
|
||||
the multiprocessing pool to target the main function with cpu_count() concurrent processes.
|
||||
"""Deserialize the database and load into a bloom filter. Initialize the multiprocessing pool to target the
|
||||
main function with cpu_count() * 2 concurrent processes.
|
||||
"""
|
||||
database = [set() for _ in range(4)]
|
||||
count = len(os.listdir(DATABASE))
|
||||
half = count // 2; quarter = half // 2
|
||||
for c, p in enumerate(os.listdir(DATABASE)):
|
||||
with open(DATABASE + p, 'rb') as file:
|
||||
print('\rreading database: ' + str(c+1) + '/' + str(count), end='')
|
||||
if c < half:
|
||||
if c < quarter: database[0] = database[0] | pickle.load(file)
|
||||
else: database[1] = database[1] | pickle.load(file)
|
||||
else:
|
||||
if c < half + quarter: database[2] = database[2] | pickle.load(file)
|
||||
else: database[3] = database[3] | pickle.load(file)
|
||||
print(' DONE')
|
||||
with open(DATABASE, 'rb') as file:
|
||||
database = pickle.load(file)
|
||||
with multiprocessing.Pool(multiprocessing.cpu_count()) as pool:
|
||||
pool.map(main(database), range(multiprocessing.cpu_count() * 2))
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user