Track Slack questions Autoresolved (#86)

This commit is contained in:
Yuhong Sun 2024-05-05 16:02:42 -07:00 committed by Chris Weaver
parent eadad34a77
commit 10be91a8cc
6 changed files with 230 additions and 4 deletions

View File

@ -6,6 +6,7 @@ from sqlalchemy import case
from sqlalchemy import cast
from sqlalchemy import Date
from sqlalchemy import func
from sqlalchemy import or_
from sqlalchemy import select
from sqlalchemy.orm import Session
@ -16,9 +17,9 @@ from danswer.db.models import ChatSession
def fetch_query_analytics(
db_session: Session,
start: datetime.datetime,
end: datetime.datetime,
db_session: Session,
) -> Sequence[tuple[int, int, int, datetime.date]]:
stmt = (
select(
@ -51,9 +52,9 @@ def fetch_query_analytics(
def fetch_per_user_query_analytics(
db_session: Session,
start: datetime.datetime,
end: datetime.datetime,
db_session: Session,
) -> Sequence[tuple[int, int, int, datetime.date, UUID]]:
stmt = (
select(
@ -80,3 +81,92 @@ def fetch_per_user_query_analytics(
)
return db_session.execute(stmt).all() # type: ignore
def fetch_danswerbot_analytics(
start: datetime.datetime,
end: datetime.datetime,
db_session: Session,
) -> Sequence[tuple[int, int, datetime.date]]:
"""Gets the:
Date of each set of aggregated statistics
Number of DanswerBot Queries (Chat Sessions)
Number of instances of Negative feedback OR Needing additional help
(only counting the last feedback)
"""
# Get every chat session in the time range which is a Danswerbot flow
# along with the first Assistant message which is the response to the user question.
# Generally there should not be more than one AI message per chat session of this type
subquery_first_ai_response = (
db_session.query(
ChatMessage.chat_session_id.label("chat_session_id"),
func.min(ChatMessage.id).label("chat_message_id"),
)
.join(ChatSession, ChatSession.id == ChatMessage.chat_session_id)
.where(
ChatSession.time_created >= start,
ChatSession.time_created <= end,
ChatSession.danswerbot_flow.is_(True),
)
.where(
ChatMessage.message_type == MessageType.ASSISTANT,
)
.group_by(ChatMessage.chat_session_id)
.subquery()
)
# Get the chat message ids and most recent feedback for each of those chat messages,
# not including the messages that have no feedback
subquery_last_feedback = (
db_session.query(
ChatMessageFeedback.chat_message_id.label("chat_message_id"),
func.max(ChatMessageFeedback.id).label("max_feedback_id"),
)
.group_by(ChatMessageFeedback.chat_message_id)
.subquery()
)
results = (
db_session.query(
func.count(ChatSession.id).label("total_sessions"),
# Need to explicitly specify this as False to handle the NULL case so the cases without
# feedback aren't counted against Danswerbot
func.sum(
case(
(
or_(
ChatMessageFeedback.is_positive.is_(False),
ChatMessageFeedback.required_followup,
),
1,
),
else_=0,
)
).label("negative_answer"),
cast(ChatSession.time_created, Date).label("session_date"),
)
.join(
subquery_first_ai_response,
ChatSession.id == subquery_first_ai_response.c.chat_session_id,
)
# Combine the chat sessions with latest feedback to get the latest feedback for the first AI
# message of the chat session where the chat session is Danswerbot type and within the time
# range specified. Left/outer join used here to ensure that if no feedback, a null is used
# for the feedback id
.outerjoin(
subquery_last_feedback,
subquery_first_ai_response.c.chat_message_id
== subquery_last_feedback.c.chat_message_id,
)
# Join the actual feedback table to get the feedback info for the sums
# Outer join because the "last feedback" may be null
.outerjoin(
ChatMessageFeedback,
ChatMessageFeedback.id == subquery_last_feedback.c.max_feedback_id,
)
.group_by(cast(ChatSession.time_created, Date))
.order_by(cast(ChatSession.time_created, Date))
.all()
)
return results

View File

@ -9,6 +9,7 @@ from sqlalchemy.orm import Session
import danswer.db.models as db_models
from danswer.auth.users import current_admin_user
from danswer.db.engine import get_session
from ee.danswer.db.analytics import fetch_danswerbot_analytics
from ee.danswer.db.analytics import fetch_per_user_query_analytics
from ee.danswer.db.analytics import fetch_query_analytics
@ -30,12 +31,12 @@ def get_query_analytics(
db_session: Session = Depends(get_session),
) -> list[QueryAnalyticsResponse]:
daily_query_usage_info = fetch_query_analytics(
db_session=db_session,
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
)
return [
QueryAnalyticsResponse(
@ -61,12 +62,12 @@ def get_user_analytics(
db_session: Session = Depends(get_session),
) -> list[UserAnalyticsResponse]:
daily_query_usage_info_per_user = fetch_per_user_query_analytics(
db_session=db_session,
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
)
user_analytics: dict[datetime.date, int] = defaultdict(int)
@ -79,3 +80,38 @@ def get_user_analytics(
)
for date, cnt in user_analytics.items()
]
class DanswerbotAnalyticsResponse(BaseModel):
total_queries: int
auto_resolved: int
date: datetime.date
@router.get("/admin/danswerbot")
def get_danswerbot_analytics(
start: datetime.datetime | None = None,
end: datetime.datetime | None = None,
_: db_models.User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> list[DanswerbotAnalyticsResponse]:
daily_danswerbot_info = fetch_danswerbot_analytics(
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
)
resolution_results = [
DanswerbotAnalyticsResponse(
total_queries=total_queries,
# If it hits negatives, something has gone wrong...
auto_resolved=max(0, total_queries - total_negatives),
date=date,
)
for total_queries, total_negatives, date in daily_danswerbot_info
]
return resolution_results

View File

@ -2,6 +2,7 @@ import { errorHandlingFetcher } from "@/lib/fetcher";
import useSWR, { mutate } from "swr";
import {
ChatSessionSnapshot,
DanswerBotAnalytics,
QueryAnalytics,
UserAnalytics,
} from "./usage/types";
@ -50,6 +51,19 @@ export const useUserAnalytics = (timeRange: DateRangePickerValue) => {
};
};
export const useDanswerBotAnalytics = (timeRange: DateRangePickerValue) => {
const url = buildApiPath("/api/analytics/admin/danswerbot", {
start: convertDateToStartOfDay(timeRange.from)?.toISOString(),
end: convertDateToEndOfDay(timeRange.to)?.toISOString(),
});
const swrResponse = useSWR<DanswerBotAnalytics[]>(url, errorHandlingFetcher); // TODO
return {
...swrResponse,
refreshDanswerBotAnalytics: () => mutate(url),
};
};
export const useQueryHistory = () => {
const [selectedFeedbackType, setSelectedFeedbackType] =
useState<Feedback | null>(null);

View File

@ -0,0 +1,78 @@
import { ThreeDotsLoader } from "@/components/Loading";
import { getDatesList, useDanswerBotAnalytics } from "../lib";
import {
AreaChart,
Card,
Title,
Text,
DateRangePickerValue,
} from "@tremor/react";
export function DanswerBotChart({
timeRange,
}: {
timeRange: DateRangePickerValue;
}) {
const {
data: danswerBotAnalyticsData,
isLoading: isDanswerBotAnalyticsLoading,
error: danswerBotAnalyticsError,
} = useDanswerBotAnalytics(timeRange);
let chart;
if (isDanswerBotAnalyticsLoading) {
chart = (
<div className="h-80 flex flex-col">
<ThreeDotsLoader />
</div>
);
} else if (!danswerBotAnalyticsData || danswerBotAnalyticsError) {
chart = (
<div className="h-80 text-red-600 text-bold flex flex-col">
<p className="m-auto">Failed to fetch feedback data...</p>
</div>
);
} else {
const initialDate =
timeRange.from || new Date(danswerBotAnalyticsData[0].date);
const dateRange = getDatesList(initialDate);
const dateToDanswerBotAnalytics = new Map(
danswerBotAnalyticsData.map((danswerBotAnalyticsEntry) => [
danswerBotAnalyticsEntry.date,
danswerBotAnalyticsEntry,
])
);
chart = (
<AreaChart
className="mt-4 h-80"
data={dateRange.map((dateStr) => {
const danswerBotAnalyticsForDate =
dateToDanswerBotAnalytics.get(dateStr);
return {
Day: dateStr,
"Total Queries": danswerBotAnalyticsForDate?.total_queries || 0,
"Automatically Resolved":
danswerBotAnalyticsForDate?.auto_resolved || 0,
};
})}
categories={["Total Queries", "Automatically Resolved"]}
index="Day"
colors={["indigo", "fuchsia"]}
valueFormatter={(number: number) =>
`${Intl.NumberFormat("us").format(number).toString()}`
}
yAxisWidth={60}
/>
);
}
return (
<Card className="mt-8">
<Title>Slack Bot</Title>
<Text>Total Queries vs Auto Resolved</Text>
{chart}
</Card>
);
}

View File

@ -1,6 +1,7 @@
"use client";
import { DateRangeSelector } from "../DateRangeSelector";
import { DanswerBotChart } from "./DanswerBotChart";
import { FeedbackChart } from "./FeedbackChart";
import { QueryPerformanceChart } from "./QueryPerformanceChart";
import { BarChartIcon } from "@/components/icons/icons";
@ -23,6 +24,7 @@ export default function AnalyticsPage() {
<QueryPerformanceChart timeRange={timeRange} />
<FeedbackChart timeRange={timeRange} />
<DanswerBotChart timeRange={timeRange} />
</main>
);
}

View File

@ -12,6 +12,12 @@ export interface UserAnalytics {
date: string;
}
export interface DanswerBotAnalytics {
total_queries: number;
auto_resolved: number;
date: string;
}
export interface AbridgedSearchDoc {
document_id: string;
semantic_identifier: string;