Fix empty / reverted embeddings (#1910)

This commit is contained in:
pablodanswer 2024-07-23 22:41:31 -07:00 committed by GitHub
parent 6ff8e6c0ea
commit 48a0d29a5c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 71 additions and 25 deletions

View File

@ -331,12 +331,18 @@ def _index_vespa_chunk(
document = chunk.source_document
# No minichunk documents in vespa, minichunk vectors are stored in the chunk itself
vespa_chunk_id = str(get_uuid_from_chunk(chunk))
embeddings = chunk.embeddings
if chunk.embeddings.full_embedding is None:
embeddings.full_embedding = chunk.title_embedding
embeddings_name_vector_map = {"full_chunk": embeddings.full_embedding}
if embeddings.mini_chunk_embeddings:
for ind, m_c_embed in enumerate(embeddings.mini_chunk_embeddings):
embeddings_name_vector_map[f"mini_chunk_{ind}"] = m_c_embed
if m_c_embed is None:
embeddings_name_vector_map[f"mini_chunk_{ind}"] = chunk.title_embedding
else:
embeddings_name_vector_map[f"mini_chunk_{ind}"] = m_c_embed
title = document.get_title_for_document_index()

View File

@ -73,7 +73,7 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
enable_mini_chunk: bool = ENABLE_MINI_CHUNK,
) -> list[IndexChunk]:
# Cache the Title embeddings to only have to do it once
title_embed_dict: dict[str, list[float]] = {}
title_embed_dict: dict[str, list[float] | None] = {}
embedded_chunks: list[IndexChunk] = []
# Create Mini Chunks for more precise matching of details
@ -168,4 +168,6 @@ def get_embedding_model_from_db_embedding_model(
normalize=db_embedding_model.normalize,
query_prefix=db_embedding_model.query_prefix,
passage_prefix=db_embedding_model.passage_prefix,
provider_type=db_embedding_model.provider_type,
api_key=db_embedding_model.api_key,
)

View File

@ -13,7 +13,7 @@ if TYPE_CHECKING:
logger = setup_logger()
Embedding = list[float]
Embedding = list[float] | None
class ChunkEmbedding(BaseModel):

View File

@ -72,7 +72,7 @@ class EmbeddingModel:
texts: list[str],
text_type: EmbedTextType,
batch_size: int = BATCH_SIZE_ENCODE_CHUNKS,
) -> list[list[float]]:
) -> list[list[float] | None]:
if not texts:
logger.warning("No texts to be embedded")
return []
@ -112,11 +112,13 @@ class EmbeddingModel:
raise HTTPError(f"HTTP error occurred: {error_detail}") from e
except requests.RequestException as e:
raise HTTPError(f"Request failed: {str(e)}") from e
EmbedResponse(**response.json()).embeddings
return EmbedResponse(**response.json()).embeddings
# Batching for local embedding
text_batches = batch_list(texts, batch_size)
embeddings: list[list[float]] = []
embeddings: list[list[float] | None] = []
for idx, text_batch in enumerate(text_batches, start=1):
embed_request = EmbedRequest(
model_name=self.model_name,
@ -143,7 +145,6 @@ class EmbeddingModel:
# Normalize embeddings is only configured via model_configs.py, be sure to use right
# value for the set loss
embeddings.extend(EmbedResponse(**response.json()).embeddings)
return embeddings
@ -156,7 +157,7 @@ class CrossEncoderEnsembleModel:
model_server_url = build_model_server_url(model_server_host, model_server_port)
self.rerank_server_endpoint = model_server_url + "/encoder/cross-encoder-scores"
def predict(self, query: str, passages: list[str]) -> list[list[float]]:
def predict(self, query: str, passages: list[str]) -> list[list[float] | None]:
rerank_request = RerankRequest(query=query, documents=passages)
response = requests.post(

View File

@ -1,5 +1,6 @@
import string
from collections.abc import Callable
from typing import cast
import nltk # type:ignore
from nltk.corpus import stopwords # type:ignore
@ -143,7 +144,9 @@ def doc_index_retrieval(
if query.search_type == SearchType.SEMANTIC:
top_chunks = document_index.semantic_retrieval(
query=query.query,
query_embedding=query_embedding,
query_embedding=cast(
list[float], query_embedding
), # query embeddings should always have vector representations
filters=query.filters,
time_decay_multiplier=query.recency_bias_multiplier,
num_to_retrieve=query.num_hits,
@ -152,7 +155,9 @@ def doc_index_retrieval(
elif query.search_type == SearchType.HYBRID:
top_chunks = document_index.hybrid_retrieval(
query=query.query,
query_embedding=query_embedding,
query_embedding=cast(
list[float], query_embedding
), # query embeddings should always have vector representations
filters=query.filters,
time_decay_multiplier=query.recency_bias_multiplier,
num_to_retrieve=query.num_hits,

View File

@ -96,6 +96,8 @@ def upsert_ingestion_doc(
normalize=db_embedding_model.normalize,
query_prefix=db_embedding_model.query_prefix,
passage_prefix=db_embedding_model.passage_prefix,
api_key=db_embedding_model.api_key,
provider_type=db_embedding_model.provider_type,
)
indexing_pipeline = build_indexing_pipeline(
@ -132,6 +134,8 @@ def upsert_ingestion_doc(
normalize=sec_db_embedding_model.normalize,
query_prefix=sec_db_embedding_model.query_prefix,
passage_prefix=sec_db_embedding_model.passage_prefix,
api_key=sec_db_embedding_model.api_key,
provider_type=sec_db_embedding_model.provider_type,
)
sec_ind_pipeline = build_indexing_pipeline(

View File

@ -80,7 +80,9 @@ class CloudEmbedding:
raise ValueError(f"Unsupported provider: {provider}")
self.client = _initialize_client(api_key, self.provider, model)
def _embed_openai(self, texts: list[str], model: str | None) -> list[list[float]]:
def _embed_openai(
self, texts: list[str], model: str | None
) -> list[list[float] | None]:
if model is None:
model = DEFAULT_OPENAI_MODEL
@ -92,7 +94,7 @@ class CloudEmbedding:
def _embed_cohere(
self, texts: list[str], model: str | None, embedding_type: str
) -> list[list[float]]:
) -> list[list[float] | None]:
if model is None:
model = DEFAULT_COHERE_MODEL
@ -108,7 +110,7 @@ class CloudEmbedding:
def _embed_voyage(
self, texts: list[str], model: str | None, embedding_type: str
) -> list[list[float]]:
) -> list[list[float] | None]:
if model is None:
model = DEFAULT_VOYAGE_MODEL
@ -124,7 +126,7 @@ class CloudEmbedding:
def _embed_vertex(
self, texts: list[str], model: str | None, embedding_type: str
) -> list[list[float]]:
) -> list[list[float] | None]:
if model is None:
model = DEFAULT_VERTEX_MODEL
@ -147,7 +149,7 @@ class CloudEmbedding:
texts: list[str],
text_type: EmbedTextType,
model_name: str | None = None,
) -> list[list[float]]:
) -> list[list[float] | None]:
try:
if self.provider == EmbeddingProvider.OPENAI:
return self._embed_openai(texts, model_name)
@ -235,9 +237,20 @@ def embed_text(
api_key: str | None,
provider_type: str | None,
prefix: str | None,
) -> list[list[float]]:
) -> list[list[float] | None]:
non_empty_texts = []
empty_indices = []
for idx, text in enumerate(texts):
if text.strip():
non_empty_texts.append(text)
else:
empty_indices.append(idx)
# Third party API based embedding model
if provider_type is not None:
if not non_empty_texts:
embeddings = []
elif provider_type is not None:
logger.debug(f"Embedding text with provider: {provider_type}")
if api_key is None:
raise RuntimeError("API key not provided for cloud model")
@ -254,14 +267,17 @@ def embed_text(
api_key=api_key, provider=provider_type, model=model_name
)
embeddings = cloud_model.embed(
texts=texts,
texts=non_empty_texts,
model_name=model_name,
text_type=text_type,
)
# Locally running model
elif model_name is not None:
prefixed_texts = [f"{prefix}{text}" for text in texts] if prefix else texts
prefixed_texts = (
[f"{prefix}{text}" for text in non_empty_texts]
if prefix
else non_empty_texts
)
local_model = get_embedding_model(
model_name=model_name, max_context_length=max_context_length
)
@ -277,14 +293,26 @@ def embed_text(
if embeddings is None:
raise RuntimeError("Failed to create Embeddings")
if not isinstance(embeddings, list):
embeddings = embeddings.tolist()
embeddings_with_nulls: list[list[float] | None] = []
current_embedding_index = 0
for idx in range(len(texts)):
if idx in empty_indices:
embeddings_with_nulls.append(None)
else:
embedding = embeddings[current_embedding_index]
if isinstance(embedding, list) or embedding is None:
embeddings_with_nulls.append(embedding)
else:
embeddings_with_nulls.append(embedding.tolist())
current_embedding_index += 1
embeddings = embeddings_with_nulls
return embeddings
@simple_log_function_time()
def calc_sim_scores(query: str, docs: list[str]) -> list[list[float]]:
def calc_sim_scores(query: str, docs: list[str]) -> list[list[float] | None]:
cross_encoders = get_local_reranking_model_ensemble()
sim_scores = [
encoder.predict([(query, doc) for doc in docs]).tolist() # type: ignore

View File

@ -17,7 +17,7 @@ class EmbedRequest(BaseModel):
class EmbedResponse(BaseModel):
embeddings: list[list[float]]
embeddings: list[list[float] | None]
class RerankRequest(BaseModel):
@ -26,7 +26,7 @@ class RerankRequest(BaseModel):
class RerankResponse(BaseModel):
scores: list[list[float]]
scores: list[list[float] | None]
class IntentRequest(BaseModel):