Alternative solution to up the number of threads for torch (#632)

This commit is contained in:
Yuhong Sun
2023-10-25 22:30:57 -07:00
committed by GitHub
parent 379e71160a
commit 604e511c09
3 changed files with 8 additions and 19 deletions

View File

@@ -3,15 +3,14 @@ import time
from datetime import datetime
from datetime import timezone
import torch
from dask.distributed import Client
from dask.distributed import Future
from distributed import LocalCluster
from sqlalchemy.orm import Session
from danswer.configs.app_configs import NUM_INDEXING_WORKERS
from danswer.configs.model_configs import (
BACKGROUND_JOB_EMBEDDING_MODEL_CPU_CORES_LEFT_UNUSED,
)
from danswer.configs.model_configs import MIN_THREADS_ML_MODELS
from danswer.connectors.factory import instantiate_connector
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
@@ -351,15 +350,9 @@ def _run_indexing_entrypoint(index_attempt_id: int) -> None:
"""Entrypoint for indexing run when using dask distributed.
Wraps the actual logic in a `try` block so that we can catch any exceptions
and mark the attempt as failed."""
import torch
import os
# force torch to use more cores if available. On VMs pytorch only takes
# advantage of a single core by default
cpu_cores_to_use = max(
(os.cpu_count() or 1) - BACKGROUND_JOB_EMBEDDING_MODEL_CPU_CORES_LEFT_UNUSED,
torch.get_num_threads(),
)
cpu_cores_to_use = max(MIN_THREADS_ML_MODELS, torch.get_num_threads())
logger.info(f"Setting task to use {cpu_cores_to_use} threads")
torch.set_num_threads(cpu_cores_to_use)

View File

@@ -30,13 +30,9 @@ ASYM_QUERY_PREFIX = os.environ.get("ASYM_QUERY_PREFIX", "")
ASYM_PASSAGE_PREFIX = os.environ.get("ASYM_PASSAGE_PREFIX", "")
# Purely an optimization, memory limitation consideration
BATCH_SIZE_ENCODE_CHUNKS = 8
# This controls the number of pytorch "threads" to allocate to the embedding
# model. Specifically, this is computed as `num_cpu_cores - BACKGROUND_JOB_EMBEDDING_MODEL_CPU_CORES_LEFT_UNUSED`.
# This is useful for limiting the number of CPU cores that the background job consumes to leave some
# compute for other processes (most importantly the api_server and web_server).
BACKGROUND_JOB_EMBEDDING_MODEL_CPU_CORES_LEFT_UNUSED = int(
os.environ.get("BACKGROUND_JOB_EMBEDDING_MODEL_CPU_CORES_LEFT_UNUSED") or 1
)
# This controls the minimum number of pytorch "threads" to allocate to the embedding
# model. If torch finds more threads on its own, this value is not used.
MIN_THREADS_ML_MODELS = int(os.environ.get("MIN_THREADS_ML_MODELS") or 1)
# Cross Encoder Settings