Rework Boost and Time Decay Calculations for No-Reranker flow (#618)

This commit is contained in:
Yuhong Sun
2023-10-23 23:25:06 -07:00
committed by GitHub
parent a014cb7792
commit 88eaae62d9

View File

@@ -93,7 +93,9 @@ def semantic_reranking(
scored_results.sort(key=lambda x: x[0], reverse=True)
ranked_sim_scores, ranked_raw_scores, ranked_chunks = zip(*scored_results)
logger.debug(f"Reranked similarity scores: {ranked_sim_scores}")
logger.debug(
f"Reranked (Boosted + Time Weighted) similarity scores: {ranked_sim_scores}"
)
# Assign new chunk scores based on reranking
# TODO if pagination is added, the scores won't make sense with respect to the non-reranked hits
@@ -120,7 +122,7 @@ def semantic_reranking(
return list(ranked_chunks)
def apply_boost(
def apply_boost_legacy(
chunks: list[InferenceChunk],
norm_min: float = SIM_SCORE_RANGE_LOW,
norm_max: float = SIM_SCORE_RANGE_HIGH,
@@ -174,6 +176,43 @@ def apply_boost(
return final_chunks
def apply_boost(
chunks: list[InferenceChunk],
norm_min: float = SIM_SCORE_RANGE_LOW,
norm_max: float = SIM_SCORE_RANGE_HIGH,
) -> list[InferenceChunk]:
scores = [chunk.score or 0.0 for chunk in chunks]
logger.debug(f"Raw similarity scores: {scores}")
boosts = [translate_boost_count_to_multiplier(chunk.boost) for chunk in chunks]
recency_multiplier = [chunk.recency_bias for chunk in chunks]
norm_min = min(norm_min, min(scores))
norm_max = max(norm_max, max(scores))
# This should never be 0 unless user has done some weird/wrong settings
norm_range = norm_max - norm_min
boosted_scores = [
(score - norm_min) * boost * recency / norm_range
for score, boost, recency in zip(scores, boosts, recency_multiplier)
]
rescored_chunks = list(zip(boosted_scores, chunks))
rescored_chunks.sort(key=lambda x: x[0], reverse=True)
sorted_boosted_scores, boost_sorted_chunks = zip(*rescored_chunks)
final_chunks = list(boost_sorted_chunks)
final_scores = list(sorted_boosted_scores)
for ind, chunk in enumerate(final_chunks):
chunk.score = final_scores[ind]
logger.debug(
f"Boosted + Time Weighted sorted similarity scores: {list(final_scores)}"
)
return final_chunks
@log_function_time()
def retrieve_ranked_documents(
query: str,